P-5-24

航空機搭載ミー散乱ライダーと雲レーダーによる 雲微物理量の観測:ライダーの開発と観測

Observations of cloud microphysical parameters using an airborne Mie lidar and a cloud profiling radar: Development of the lidar and experiments

杉本伸夫 ¹、松井一郎 ¹、清水 厚 ¹、熊谷 博 ²、岡本 創 ³ N. Sugimoto ¹, I. Matsui ¹, A. Shimizu ¹, H. Kumagai ², H. Okamoto ³ 1 国立環境研究所、2 通信総合研究所、3 東北大学

1. National Institute for Environmental Studies, 2. Communications Research Laboratory, 3. Tohoku University

Abstract We developed an airborne lidar for simultaneous measurements with a cloud profiling radar to study microphysical parameters of clouds. The developed lidar is a polarization Mie lidar using the third harmonics of Nd: YAG laser (355 nm). The lidar was installed on the Gulfstream-II aircraft looking nadir through a window with a diameter of 12 cm. Observations were performed during APEX-E3 campaign (15 March- 16 April, 2003) simultaneously with the 95-Ghz cloud profiling radar (SPIDER) of the Communications Research Laboratory.

1. はじめに

ライダーと雲レーダーを組み合わせた手法は、雲の微物理量を遠隔計測法として非常に有効である。これは、雲粒による散乱の粒径に対する依存性がレーダーとライダーでは異なることを利用するもので、雲の粒径、雲水量などを導出することができる。欧州宇宙機構(ESA)と宇宙開発事業団(NASDA)が共同で開発中の大気放射観測衛星 EarthCARE ではライダーと雲レーダーとの同時搭載が計画されている。

本研究では、EarthCARE のための観測技術およびデータ解析手法等の基礎研究と、ライダー、レーダーを用いた雲の観測研究の2つの観点から、新たに航空機搭載ライダーを開発し、通信総合研究所の雲レーダー(SPIDER)との同時観測実験を行った。

2. 航空機搭載偏光ミー散乱ライダー

開発したライダーは Gulfstream-II のキャビン内に搭載し、有効径約 12cm の窓(ドロップゾンデ用の開口部を利用)から直下を測定するもので、ポッドに搭載された雲レーダーと同時に雲、エアロゾルを観測する。光源には、フラッシュランプ励起の Nd:YAG レーザーの第三高調波(355nm)を用いた。これはアイセーフティーを考慮したことと、EarthCARE で355nm の高スペクトル分解ライダーが検討さ

れていることによる。Table 1 に製作したライダーの主な仕様を掲げる。また、Fig. 1, Fig. 2 にライダーの外観の図と写真を示す。

Table 1 Specification of the airborne lidar

Lidar method	Polarization Mie lidar
Measurement	Nadir (no scanner)
Direction	
Target of	Cloud structure up to optical depth
observations	of approx. 2, cloud phase
	(ice ,water), aerosol distribution
Transmitter	Third harmonics (355 nm) of
	flashlamp-pumped Nd: YAG laser
	(Quantel ULTRA CFR).
	Output energy: 6 mJ/pulse,
	Repetition rate: 20 Hz.
Receiver	Telescope effective diameter: 12 cm
	Detector: photomultiplier tubes
	(two polarization channels).
Data	Transient recorder (Licel TR40/80).
acquisition	Accuracy: 12 bits, range resolution:
	3.75 m.
	Horizontal resolution: approx. 15m
	(corresponds to 20 Hz repetition)
Measurement	Linux PC
control	

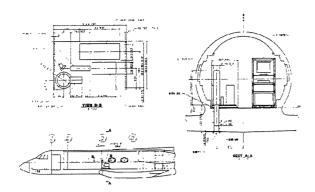


Fig. 1 Layout in the aircraft.

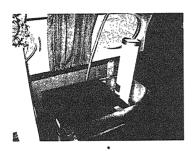


Fig. 2 Photograph of the lidar.

3. 航空機観測

3月15日から4月16日に行われたAPEX-E3 の観測キャンペーン期間中に、ライダーと雲 レーダーの同時観測を、フェリーフライトを 入れて 11 回行った。ライダーは全フライトで 良好な観測データを得た。

観測のクイックルックデータの一例を Fig. 3 に示す。雲レーダーとの同時解析は現在進行中であるが、クイックルックデータからも興味ある現象を見ることができる。

まず、当然ではあるが、ライダーとレーダーでは見えるものが非常に異なることがわかる。レーダーでは大粒子で散乱が大きいのに対し、ライダーでは小粒子で散乱が大きく減衰も著しい。

また、方向の揃った氷雲のスペキュラーな 後方散乱(減衰は小さいが、後方散乱が極め て大きく、偏光解消度が小さい)が、航空機 が旋回で傾く際に後方散乱が急に下がり、偏 光解消度は増加する例なども捉えられた。現 在、詳細な解析を進めている。

謝辞

本研究のライダー開発は環境省地球環境研究総合推進費(ACECAP)による。また航空機観測は科学技術振興事業団戦略基礎研究(APEX)による。

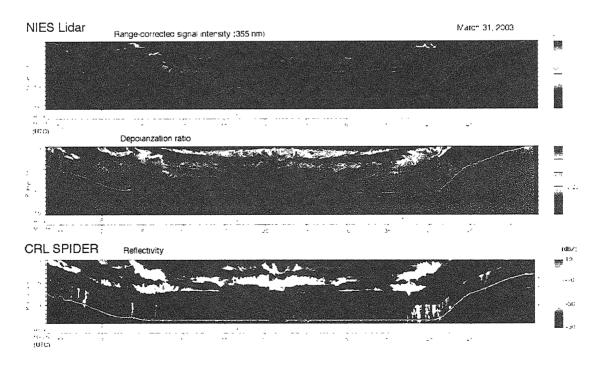


Fig. 3 Example of quick-look indications of the simultaneous lidar radar measurements.