植生観測用ライダー(MOLI)の評価試験計画

境澤 大亮¹, 三橋 怜¹, 室岡 純平¹, 今井 正¹, 木村 俊儀¹, 浅井 和弘² ¹宇宙航空研究開発機構(〒305-8505 茨城県つくば市千現 2-1-1) ²東北工業大学(〒982-8577 宮城県仙台市太白区八木山香澄町 35-1)

Evaluation schedule of canopy crown height lidar MOLI

Daisuke SAKAIZAWA¹, Rei MITSUHSHI. Jumpei MUROOKA¹, Tadashi IMAI¹, Toshiyoshi KIMURA¹, Kazuhiro ASAI²

¹ Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505
² Tohoku Institute of Technology., 35-1 YagiyamaKasumi, Taihaku, Sendai, Miyagi 982-8577

Abstract: Forest canopy crown height is a key factor to evaluate the above-ground forest biomass by remote sensing techniques. Measurements of canopy height from space progress to understand the carbon budget. JAXA has studied a space-borne vegetation lidar (the Multi-footprint Observation Lidar and Imager: MOLI) that observes canopy crown height on the new exposed facility of the Japanese Experiment Module (JEM), the IVA-replaceable Small Exposed Experiment Platform (i-SEEP) on the International Space Station (ISS). The double beam configuration test of laser transmitter on the BBM, schedule of thermal/vacuum test, and vibrational test are shown in this presentation.

Key Words: Laser transmitter for space environment, thermal and vacuum test, vibrational test

1. はじめに

森林監視やバイオマス推定等に知見のある有 識者や外部機関の要望を受け、JAXA では、ライ ダーによる森林観測を検討してきた.そして植生 観測用ライダーの軌道上実証と、L-band SAR を含 む他の地球観測衛星データとの統合利用による 森林バイオマス推定高精度化の実証を目的とし、 ISS 搭載植生ライダーミッション" MOLI" (Multi-footprint Observation Lidar and Imager)の研 究開発を実施している.本発表では MOLI 搭載セ ンサの評価試験のうち、2 ビーム照射生成部と、 レーザ送信器の環境試験計画について述べる.

2. MOLI 搭載センサ

MOLI では単位面積当たりのバイオマス推定 精度の改善のため、2 フットプリントのライダー 観測とイメージャの同時観測を行う。この同時観 測は 2003 年に打上げられた ICESat のフットプリ ント(直径 70m 程度)では林冠高計測精度に地表 面の傾斜が悪影響を及ぼしたことが挙げられる。 このため、林冠高計測で傾斜影響を最小化するた めにフットプリントを小径化し、進行方向に沿っ て照射密度を高め、また、2 ラインの観測により 傾斜を推定可能なシステムとした。またイメージ ャはライダーによる観測点の位置識別に加えて、 観測時の植生情報(植生指数やフェノロジー)の 同時取得により、他の衛星データ(MODIS, GCOM, ALOS-2)で得られる面的情報との統合解析を可能 とする。

3. 評価試験

3.1 ビーム分割プリズムを用いた2ビーム生成 MOLI 搭載ライダーでは,地表面傾斜上の林冠 高測定精度を改善するため,Fig.1 に示す通り, レーザビームを2本同時照射し,アレイ検出器で その波形を取得する。搭載プラットフォームにお けるミッション機器許容寸法の観点から、レーザ 送信器から出射するビームをプリズムにより分 割する機構を採用している。偏光光学素子を用い た場合と比較して,1素子でビーム分割を実現で き,寸法メリットだけでなく透過率も複数素子 を利用する場合と比較すると、送信レーザのエネ ルギーロスを低減することができる。ただその一 方で利用実績を持たない分割機構であり,現在 インハウス試験を通じて運用時の特性を評価し ている。

Figure 1. Concept of double-beam configuration

ビーム分割プリズムを用いて、パルスレーザを 分割した1例をFig.2に示す。光源は1064nmの Qsw パルスレーザ(出力 1mJ, 6ns)を利用し、プ リズムに入力するビーム径(4σ相当)は 3.8mm とした。使用したビーム分割プリズムは Fig. 1(a) の頂角(入射ビーム中央部が透過する部位)がエ ッジ形状ではなく、研磨の過程で、鋭利な角度と ならず、だれている(仕様の上ではエッジを中央 として+/-0.5mm 程度)。数値計算上ではこの効果 も模擬した形状を反映して、計算した。ビーム分 割後のエネルギー分布は、ビーム間にわずかに滲 みが現れているのが分かる。数値計算の結果から、 エネルギーのにじむ量はビーム間が近接すれば 増加、離れれば減少する傾向を示し、頂角のだれ はにじみ量を増加させる。照射エネルギーに対す る受信視野に相当する範囲のエネルギー割合を 求めると、96.0%/95.1 (数値計算/実験結果) が 得られている。理論上 97%まで受信視野相当にエ ネルギーが入るが、実験結果は背景光もエネルギ ー量として計算しており、数値計算上の誤差の範 囲と認識している。

数値計算と実験結果双方から、ウェッジ角度、 頂角のだれなどを調整することで、視野内のエネ ルギー量増加の見込みが得られており、今後 BBM を用いて2ビームと2つの受信視野を制御するア ルゴリズムの評価を予定している。

3.2 真空・熱ショック、振動試験

昨年のシンポジウムでは、寿命試験モデルを用 いて、レーザの寿命(目標 42 億ショット、61 億 ショットの実績)、ビーム品質(目標 $M^2<2$ に対し て $M^2=1.5+/-0.2$)、レーザビームの指向安定性(目 標 $1\sigma<100$ urad に対して、 $4\sigma<30$ urad)、与圧筐体 の封入能力(初期値に対する現象 3%以内の目標 に対して 1%以内)、与圧環境でのレーザ運用条件 を評価し、いずれも目標を達成し、構成する手段 や手順等の過程に対して妥当性を評価できた。

現在、Fig.3 に示す環境試験モデルを用いた試 験を計画しており、年度内に実施する。熱真空試 験はシステム全体の動作温度上限下限における 健全性評価に加え、熱ショックを与圧筐体にかけ

Figure 2. Result of divided beam by a wedged prism. (a) configuration generating dual beam by using a wedged prism, (b) Simulation result, and (c) experimental result. た場合に、与圧筐体の封入能力に対する健全性評 価も行う。

振動試験はソフトバッグを利用した HTV-X の 環境を模擬した条件(MOLIの打上げ条件に対応) と、環境試験で一般に適用される振動条件(認定 試験レベル)も想定して、準備を進めている。 ソフトバッグを用いた打上げ環境は、ランダム 振動レベルが緩和され、受入試験のレベルとして も 6.8grms 程度のワークマンシップエラーの抽出 レベルを評価条件とする。ただし静荷重に対する 評価はソフトバッグの打上げ環境でも実施する

必要があり、認定試験の規定に沿って実施する。 一般環境を想定した振動試験は将来のライダ ーに向けた技術成熟度の向上の一環で実施予定 である。振動スペクトルは試験標準上、与圧筐体 封入レーザの重量を基準にコンポーネント認定 試験を想定し、AT レベルで 10Grms、QT レベル で 14Grms を印可し、健全性の評価を行う。

4. まとめ

ISS 搭載植生ライダーのシステムの開発を実施 しており、インハウス試験においてビーム分割機 構の機能評価を実施した。実験結果を説明可能な 数値計算ツールの整備により、当該機構の特性評 価をより効率的に進められる環境を整備できた。 また、環境試験モデルを利用した、熱真空、振 動試験を行い、レーザ送信器に対する技術的な成 熟度向上を本年度内めどに実施予定である。

謝 辞

ビーム分割に必要なプリズム設計及び製作に 直接の指導を頂いた,国立環境研究所 杉本様に 感謝いたします.またプリズム評価試験に協力い ただいた情報通信研究機構 水谷様に感謝いたし ます.

参考文献

1) M. A. Lefsky, Geophys. Res. Lett. 37 (2010) L15401.

2) 三橋 怜, 室岡 純平, 境澤 大亮, 今井 正, 木 村 俊儀, 浅井 和弘:第35回レーザセンシングシ ンポジウム予稿集 1 (2017) 24.

Figure 3. Environmental test model (3D-model) of pressurized MOPA laser.