植生観測ミッションMOLIのライダー開発

境澤 大亮, グェン タトトルン, 澤田 義人, 今井 正, 木村 俊儀 「宇宙航空研究開発機構 (〒305-8505 茨城県つくば市千現 2-1-1)

Development of ISS based vegetation mission MOLI

Daisuke Sakaizawa, Nguyen Tat Trung, Rei Mitsuhashi, Yoshito Sawada, Tadashi Imai, and Toshiyoshi Kimura

¹ Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505

Abstract: Forest canopy crown height is a key factor to evaluate the above-ground forest biomass by remote sensing techniques. Complemental measurements of lidar and imager for canopy height from space progress to understand the forest biomass. JAXA has studied a space-based vegetation lidar (the Multi-footprint Observation Lidar and Imager: MOLI) that observes canopy crown height on the new exposed facility of the Japanese Experiment Module (JEM), the IVA-replaceable Small Exposed Experiment Platform (i-SEEP) on the International Space Station (ISS). The double beam configuration test of laser transmitter on the BBM, schedule of thermal/vacuum test, and vibrational test are shown in this presentation.

Key Words: vegetation, forest biomass, MOLI, Laser transmitter for space environment, thermal and vacuum test.

1. はじめに

森林の違法伐採の抑止やバイオマス推定 を通じた炭素循環への貢献を念頭に、 JAXA では、ライダーによる森林観測を検 討している.そして地球観測用ライダーと して、各コンポーネントの軌道上実証と、 L-band SAR を含む他の地球観測衛星デー タとの統合利用による森林バイオマス推定 高精度化の実証を目的とし、ISS 搭載植生 ライダーミッション" MOLI" (Multi-footprint Observation Lidar and Imager)の研究開発を実施している.本発 表では MOLI ミッションの概要と搭載セン サの研究開発のうち、レーザ送信器の環境 試験計画について述べる.

2. MOLI 搭載センサ

MOLI では林冠高計測のためにライダ ーを利用し、イメージャとの同時観測によ る単位面積当たりのバイオマス推定精度の 改善を目的とする. 林冠高データとして利 用 さ れ る 、 ICESat(2003-2011) や ICESat-2(2018-), GEDI(2018-)はライダー単 体での計測であり、実データを利用する研 究者からは観測フットプリント周辺の植生 情報のマッチング精度に疑問が残る指摘が 出ており、MOLI ではその対策としてライ ダーとイメージャの同時観測を行う.

また、ICESat のような大きなフットプリ ント(直径 70m 程度)は傾斜地の林冠高を 計測する場合、確度の高い地表面高度が得 られず、精度を悪化させることが分かっている.このため,フットプリントを小径化し,進行方向に沿って照射密度を高めた観測により、Figurelに示すような傾斜自体を推定可能なシステムとした.またイメージャはライダーによる観測点の位置識別に加えて,観測時の植生情報(植生指数やフェノロジー)の同時取得により,他の衛星データ(MODIS, GCOM, ALOS-2)で得られる面的情報との統合解析により、広い領域で森林バイオマス推定の精度改善を目指している.

3. 評価試験

JAXA では寿命試験モデルを製作し、 2015年~2017年にかけて真空環境下のレ ーザ寿命(目標 42 億ショット、実績 61 億ショット)、ビーム品質(目標 M2<2、

Figure 1. Concept of double-beam configuration

実績 M2=1.5+/-0.02)、レーザビームの指 向安定性(目標 1 σ <100urad,実績 4 σ <30urad)、与圧筐体の封入能力(目標: 初期値から 3%以内,実績初期値から 1% 以内)について目標を達成し、構成する手 段や手順等の過程に対して妥当性を確認 した.

昨年度は、環境試験モデル(レーザ、及 び電流源)を製作し、これを用いた評価試 験を実施した.実施するのは熱ショック 試験、振動試験、熱真空試験である.

3.1 振動試験

振動試験は筑波宇宙センターにおける振動試験設備を利用した(Fig. 2). ソフトバッグを利用した HTV 環境で想定される条件として、6.8Grms 程度のワークマンシップエラーの抽出レベルを評価条件としたものの、レーザは工程管理に問題があり、最終的な振動環境印加には至らず、構造数学モデルと実試験との間で、固有振動数などのマッチングのみとなった.一方、電流源は確認できず、振動試験を無事終了した本年度はレーザ部分で得られた課題を抽出し、再度振動試験を実施予定である.

3.2 真空・熱ショック

熱ショック試験は、恒温槽にレーザを配 置し、温度上限(+55℃)、下限(-20℃) の温度に長時間晒し、光学素子の健全性や 与圧筐体の気体封入能力に劣化の有無に ついて評価を行った.真空試験は直径1 mの真空チャンバにレーザを与圧筐体ご と配置し、真空排気(到達真空度 2x10⁻³ Pa)後、動作温度上限(24℃),下限(16℃) における性能変化を取得した.

熱ショック試験の前後でレーザ自体の 各パラメータ変化や、140kPaで封入した 乾燥空気の気圧変化は検出できず、与圧管 体の機能に劣化はなかった.

真空試験では上限温度、下限温度いずれ も、48時間以上稼働させた状態で、レーザ のパラメータは上限と下限の差は±5%内 で収まった.筐体内部の圧力についても 1kPa以内の変化であり、差圧が1気圧以上 ある場合でもレーザ用与圧筐体の気体封入 能力は確保できたといえる.一方、電流源 用の与圧筐体は、1日程度で真空放電領域 まで電源用筐体内部の圧力低下が見られた. 原因は、リリーフバルブのシーリングであ り、与圧筐体で利用していたものに入れ替 えると 3%/year の減少量まで密閉度は改善 された.

4. まとめ

環境評価用の試験モデルを製作し、熱シ ョック試験、真空試験、振動試験を行った. 振動試験はレーザ部位で最後まで完遂でき なかった.熱ショック及び、真空試験はレ ーザ用与圧筐体、及び電流源用筐体共に、 印加した環境条件での劣化は確認できず、 健全性を確認することができた.

参考文献

1) M. A. Lefsky, Geophys. Res. Lett. 37 (2010) L15401.

 L.A.Margruder and K.M. Brunt, IEEE Trans Geosci Remote Sens 56 (2018) 2911-2918.
P.R. Stysley et al., Opt. Laser Technol. 68 (2015) 67-72.

Figure 2. pressurized laser canister on the vibration bench.

Figure 3. pressurized laser canister in constant temperature bath.