低コヒーレンスドップラーライダーの受信効率の向上

大久保 洸祐, 椎名 達雄

千葉大学工学部画像科学科(〒263-8522 千葉市稲毛区弥生町1-33)

Improvement of reception efficiency in low-coherence Doppler lidar

Kosuke Okubo and Tatsuo Shiina

Chiba Univ., 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstract:

We made a new type of Doppler lidar based on a low coherence light source of DFB-LD. As the theorical approach, we estimated the signal-to-noise ratio and received light intensity to measure wind. To get the signal from wind, we need to improve reception efficiency in our lidar. As we changed a cassegrain telescope to a refractive telescope, we got higher signal from a hard target. In addition, we obtained the Doppler signal from soft target flow like smoke.

Key Words: Doppler, Lidar, Wind

1. はじめに

ドップラーライダーは大気中で動いているエア ロゾルから風情報を遠隔で取得できる手法として 広く用いられている.空港などで扱われているドッ プラーライダーは鉛直上空大気の風の場が対象で ある.大気の流れは高度に依存して高いほど大きな まとまりとしてゆるやかに動く.必然的に空間・時 間スケールが大きく、また長くなり、従来のドップ ラーライダーでは大きな測定範囲で十分に長い時 間をかけて積算し風情報を取得している.一方で建 設現場の安全性など地表近くの風情報も需要が大 きい.地表面大気は小さなまとまりで急峻に動く. そのため、空間・時間スケールが小さく、また短く なり、従来のドップラーライダーでは計測できない. 測定範囲を小さくし、高分解能かつ高速に計測する 必要がある.

先行研究ではこれらの背景をもとに、低層大気約 100m を空間分解能 1m で水平計測する低コヒーレ ンスドップラーライダーの開発をはじめた.光源に 高出力 976nmDFB-LD のバルク素子を用い、コヒー レンス長を制御するために駆動条件を定めた.

本研究では風からの受光量を見積もり, SN 比と受 光量の関係を求めた. さらにカセグレン式望遠鏡か ら屈折式望遠鏡に変更し, 受信効率の向上を図った. ソフトターゲットからのドップラーシフト計測で 評価を行った.

2. 装置

低コヒーレンスドップラーライダーには光源として、976nmDFB-LDのバルク素子を用いた. バルク 素子の仕様を Table.1 に示す.最大 2.7W で線幅が 10pm となり、コヒーレンス長は 0.1m にとどまる. 出力やコヒーレンス長などの基礎特性計測から駆 動電流 2.0A、素子温度 35℃とすることでコヒーレ ンス長は 0.8m となり、駆動条件として定めた[1].

本研究のライダーの仕様を Table.2 に示す.

Table.1 Specification of DFB-LD

A	
Manufacturer	Hamamatsu Photonics
Model number	976nm DFB-LD
Center wavelength	975nm
Output power	2.7W[CW:max]@3A
Spectrum width	~10pm

Table.2 Parameters of low-coherence Doppler Lidar	
Laser power	1.07W
Drive current	2.0A
Element temperature	35℃
Coherence length	0.8m
Diameter of aperture	61mm
Balanced detector	Hamamatsu Photonics
	C12668-01

3. 原理

Fig.1 に低コヒーレンスドップラーライダーの原 理を示す.低コヒーレンスドップラーライダーは光 のドップラー効果を応用している. 測定範囲はコヒ ーレンス長にあたり、その区間のみの風情報を取得 できる.DFB-LD によって出力された光はエキスパ ンダーでコリメートされスライドガラスにより一 部参照光として取り出される.参照光は計測距離に 応じた長さのファイバに導かれ、ファイバカプラに 入る.大気中を伝搬し、ドップラーシフトを含んだ 後方散乱光は望遠鏡で集光され、ファイバカプラに 入る.参照光と受信光がファイバカプラで干渉し、 ドップラーシフトに応じたビート信号をバランス 検出器で取得する.参照光路の長さを変更すること で,干渉に必要な計測距離を可変できる.従って, 参照ファイバの長さを変更もしくは切替えること で計測距離を任意に決定できる.

Fig.1 Principle of low-coherence doppler lidar.

実際に風計測を行うために,風からの受光量を(1) 式によって求めた[2].

 $P_s \approx \pi P_r \beta(\pi) \lambda$ (1)

ここで, P_s: 受光強度, P_r: 送信光強度, β(π): 後方散 乱係数, λ: レーザーの波長 である.

β(π)を標準大気の 3.4×10⁻⁶(/m/sr)とすると、受光強度 は約 7.5pW と見積もられる.

ターゲットを対象とした時の信号対雑音比 SNR とターゲットの反射率の関係[3]を(2)式から求めた.

$$SNR(L) = \frac{\eta_D(L)WK^{\frac{2L}{1000}}D^22R}{8hvBL^2}$$
(2)

η_D(L):システム効率,W:送信光出力,v:レーザー 周波数,K:大気の透過率,D:開口径,R:反射率, h:プランク定数,B:受光バンド幅である.

式(2)のシステム効率を決定するために、ターゲットとして定速回転するリトロリフレクターを 6.5m先に設置して実験した.反射率を受光量に変換 し、式(1)から求めた受光量と比較した.その結果を Fig.2 に示す.実線は本システムの実測値であり、 0dB 以上で信号が取得できる.このとき風からの受 光量は約-12dB であり、本システムの受光感度を約 1 桁高めることで風計測できると見積もられた.

Fig.2 Relationship between SNR and Received light intensity.

5. 受信効率の向上

受信効率を高めるために,望遠鏡を開口径 90mm, 焦点距離 1000mmのカセグレン式から開口径 61mm, 焦点距離 360mmの屈折式に変更した.カセグレン 式はレンズの中央部が副鏡の影となり,受光できな い部分ができ,効率が低下する.Fig.3 にハードター ゲットを用いた際の望遠鏡の違いによる信号強度 の比較を示す.結果は約9dB分受信効率が上昇した.

Fig.3 Signal comparison from hard target in Refractive and Cassegrain telescope.

6. ソフトターゲットの実験

風計測のモデルとして、ソフトターゲット(スモ ーク)を対象に、ドップラーシフト計測を行った.風 洞の大きさは直径約30cm,全長約110cmである.ス モークの速度を風速計で同時計測すると、 1.41m/s~1.82m/sであった.Fig.4にスペクトルアナラ イザーで取得した実験結果を示す.スモークのあ り・なしで差分をとっている.なお、掃引時間は5ms で3000回の平均をとっている.2.9MHzにピークが 現れた.ピーク値を速度に直すと、1.41m/sであり、 風速計と等しい結果が得られた.信号が小さくなっ たのは掃引時間に対して流れを一定速度に保てず、 揺らいでしまったことが考えられる.

今後の予定として実際に風が計測できるように 最適な実験方法を考え,また信号を増大させるため にアンプの導入を検討する.

Fig.4 Signal spectrum from smoke target.

参考文献

[1]島田 翔平, 椎名 達雄, 第 34 回レーザセンシン グシンポジウム予稿集, p.66-67, 2016

[2]V.M. Gordienko, A.V. Koryabin, N.V. Kravtsov, and V.V. Firsov, "Wind Doppler lidar with 1.5μm fiber laser", Laser Physics Letters, Vol.5, No.5, p.390-393, 2008 [3]Shunpei kameyama, Toshiyuki Ando, Kimio Asaka and Yoshisito Hirano, "All-Fiber Coherent Doppler Lidar System for Wind Sensing", Industrial Applications of Laser Remote Sensing, p.115-142, 2012