CRDS によるアンモニアガス中の¹⁵N/¹⁴N 比

山中 千博¹, 橋爪 光², 村山 純平¹ ¹大阪大学 理学研究科 (〒560-0043 豊中市待兼山町 1-1) ²茨城大学 理学部 (〒310-8512 茨城県水戸市文京 2-1-1)

Measurement of ¹⁵N/¹⁴N isotope ratio in ammonia gas by CRDS

Chihiro YAMANAKA¹, Ko HASHIZUME² and Jyunpei MURAYAMA³

¹Osaka Univ., 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 ² Ibaraki Univ., 2-1-1 Bunkyou, Mito, Ibaraki 310-8512

Abstract: The nitrogen isotope analysis in ammonia gas was successfully performed by CRDS at 1495nm. Because the proper wavelength region is similar between H₂O and NH₃, both species would be analyzed by the same CRDS device. The significance of nitrogen isotopes in planetary science is also described.

Key Words: water isotopes, CRDS: cavity ringdown spectroscopy, planetary mission, snow line, ammonia

1. はじめに

大気中の微量成分を検出する手段として、CEAS or CES (Cavity Enhanced Absorption Spectroscopy) は広 く用いられるようになった。CRDS (Cavity Ring-Down Spectroscopy) は、その端緒ともいうべき手法であ るが、現在は多くのバリエーションが生まれ、CRDS は CES の範疇になっている。筆者らは、JAXA 宇宙 探査イノベーションハブ研究の支援に基づく「ガス中微量水分計の小型・軽量・ロバスト化技術の研究」 (2016-19,神栄テクノロジー,産総研, 阪大,茨城大, 鹿児島大) にて,共振器長 5cm の超小型 CRDS の 開発を行った。この成果を踏まえ、2023 年 7 月には、(株)神栄テクノロジー社から 1 気圧中の 12 ppbv ~ 20 ppmv(-100~-55°CDP: dew point: 露点)の微量水分を測定できる装置として販売されている。これは半 導体製造時のガス中の水分のモニタリングなどに使われるものである。

一方で、我々はこの小型装置をオンサイトにおける惑星探査に用いることを想定し、低圧力時の水分測 定、および水蒸気中の水同位体分析に使用するための研究を行ってき¹⁾(昨年度LS学会でも発表)。波長1.4μ, 共振器長 5cm の CRDS でも、重水素同位体偏差 δD~-990 程度の判別が可能となっている。これは標準的 な地球水における水素同位体比(*D/H)vsmow*=155.76±0.1 ppm ~ 1/6420 に対し D が 1/100 のケースまで測 定できることを示している。現在、月の表面に飛来する太陽風中の水素は、D が極端に枯渇していること が知られており、このため太陽風水素と月表面の酸素が反応してできる OH あるいは H₂O は 軽い水素 だけでできていると考えられており、一方彗星などが月面にもたらす水は重水素濃度が高く、CRDS で月 の微量水分を調べることにより、この差異を明らかにすることを目指している。ちなみに同位体のδ値は、 標準とするべき試料中の同位対比に対する測定試料中の同位対の比の偏差を以下で表したものである。

2. アンモニアの同位体と惑星科学

原始惑星系円盤において分子が凍結・昇華する境界のことをスノーラインと呼ぶ。惑星空間には H,C,N,O などの軽元素からなる揮発性分子が存在する。希ガスや水素を別にすれば、揮発性分子といえども冷温で は凝縮する。よってスノーラインを境に、ガスと固体(氷+ダスト)の元素組成が大きく変わるため、スノ ーライン位置の同定とそこでの組成の変化を理解することは、惑星系の歴史を理解する上で重要である。 スノーラインは、中心恒星の活動度や惑星空間の光学的厚さなどによって、時間とともに変化したと考 えられている。実際、スノーラインの外で形成された太陽系小天体は、固化した物質を集積することがで き、その後、軽元素からなる固体/有機分子を内側の地球型惑星に移送することで、これらを生命居住可 能とする惑星へ導いた、と考えられている。実際、月面においても間接的に H₂O, NH₃,といった分子の存在

が観測されている^{2,3)}。

月面に落下した揮発性物質は、隕石衝突や太陽光照射などによる影響で、その多くは散逸するが、通常の月面昼間温度であれば、H2O分子程度だとその脱出速度に達せず、よって、月面の低温域に移動しながら集積することになる。極域などの低温域で地下に潜り込めば、蒸気圧は低く、太陽光も受けないため長く存在することも可能である。月境域の地下は、長年にわたってスノーライン外部からもたらされた揮発性物質の情報を持っていることが期待されるのである。

さて、仮に月面揮発性試料の H,O,N の同位体を考えることにする。水素に関しては、その供給源は太陽 風の影響が圧倒的であり、いわゆる軽い水素(H)が支配的になる。しかし、軽い水素は容易に同位体分 別するため、わずかな同位体差異の計測をもって起源の判別には使いづらい。一方で、酸素、窒素は小惑 星起源の隕石、あるいは月岩石由来と考えられる。しかし、そもそも地球や月の材料は、その元素・同位 体組成の類似性(全岩組成)から、コンドライト隕石とよばれる始原惑星物質であるとされている。そのた め、小惑星物質由来とする証拠を月試料に求めるのは、実は簡単ではない。実際、多くの小惑星隕石にお ける酸素同位体は、相対存在度で 0.5 %以内の変動にすぎない。ところが、¹⁵N/¹⁴N 比は、太陽風との対比 では地球大気より約 40 %低く⁴⁾、微小隕石では、平均的に 20 %ほど高い ⁵ことが知られている。また月表 土の全岩 ¹⁵N/¹⁴N 比では、およそ地球大気に比べて+10 %から-20 %までの変動があることが知られており ⁶⁾、これは、太陽風と小惑星物質起源窒素の混合比の変動によるもの、と解釈されている。すなわち、窒素 同位体の測定は、隕石起源であることの指標となりうることがわかる。ここに、アンモニアの同位体測定 の重要性がある。

アンモニアは、工業・農業的に重要な資源であるとともに、水素燃料の輸送媒体や燃料そのものとしての期待もされている。また地球環境を考える上でも重要な物質であり、分光学的にも古くから研究されている。しかし、その同位体に関しての分光学データーは一部の波長を除いて乏しく、HITRAN database などを探しても総括的なものはない。赤外分光で環境中のアンモニア濃度を測定する機材や報告は多々あるが、同位体測定に関してはまとまったものはない。本研究では、この点に注目して、気体アンモニア中の15N/14N 測定を行った。

Fig.1 Schematic diagram of sample line. "P" represents a pressure gage.

実験装置と結果

実験は、現在我々が使用している自作の共振器長 50cm の近赤外域 CRDS を転用した。但し、LD 波長に 関しては 1495nm のものを新たに用意した。CRDS は、セルを 30℃に保持したが、共振器長についてはピ エゾ素子などを用いずに測定を行った。

Fig.1 に ガスのサンプルラインを示す。NH3ガスとしては、1) 1%アンモニア水を気化させたもの
2) ガス会社から購入した通常のNH3 (99.9%) 3) ¹⁵NH3 (≥ 98%) 4) N2 (99.999%) 希釈用 を用いた。
このほか、濃度測定用として NH3/N2 (20, 100, 1000 ppm) などを用意した。以下では 同位体測定について述べる。

同位体濃縮ガスは、1気圧下でシリンジに移した後、セプタムを介して1気圧窒素で満たした前段タン ク(1L)に注入し、時間をおいたのち、真空にした CRDS セルに通じるバルブを開けた。このとき、同位

体ガスの注入量と、前段タンク/CRDS セルの体積比を考慮したうえで、CRDS 内の圧力を調整して、希釈 率を目的値に合わせることとした。

Fig.2 CRDS absorption spectra of NH₃ gas at 2 Pa and 100Pa. Horizontal axis shows the input voltage to the LD, which corresponds to the laser wavelength, namely 1494.2 nm at $V_{LD} = 0$ V. The wavelength span is approximately 0.03nm. Black and Red points represent the β values (reciprocal of ringdown time) of NH₃ and ¹⁵NH₃ standard, respectively. Blue lines represent fitted spectra with Voigt model, while red line represents the summation of these spectra.

Fig.3 Calibration plot of ¹⁵NH₃ isotopes sample. The Horizontal axis, δ ¹⁵N true is the isotopic ratio estimated from the amount of ¹⁵NH₃ and pure N₂ gas. The vertical axis shows the measured isotopic δ value by CRDS assuming $\delta = 0$ for pure ¹⁴NH₃ gas.

Fig.2 に得られた CRDS スペクトルおよびそのフィッティング例を示す。¹⁵NH₃のスペクルにおいては、 分子の対称性から吸収ピークが分裂して(図中 P1a,P1b)見えている。

Fig3に、本研究で得られた検量線を示す。ノーマルの99.9%¹⁴NH₃のδ値を基準とした場合のケースに 当たる。グラフより、濃度の高い領域において広い範囲で同位体測定が可能であることがわかる。

4. まとめ

今回、アンモニアガス中の窒素同位体の CRDS による検出を検討し、50cm の試料セルおよび波長 1495nm にて実測したところ、標準ガスを含むそれ以上の同位体濃度において安定に測定が可能であった。よって 1.4 µm 帯の LD の切り替えを行えば、水-アンモニア系の CRDS 測定が同一装置で可能であると考えられ る。アンモニアは水に容易に可溶し、水とともに惑星空間における移動が可能である。よって H,O,N,の同 位体測定が可能となれば、惑星探査の見地から重要な観測がなされることが期待できる。今後は、標準よ り薄い濃度における窒素同位体測定およびアンモニア中の水素同位体の測定について進めていく予定であ る。

謝 辞

本研究は JSPS 科研費 20H00190「深宇宙プローブとしての窒素同位体研究」の支援を受けた。

参考文献

1) J. Murayama et al., Sensors and Actuators A: Physical 338. (2022) 113481.

2) A. Colaprete, et al., Science 330. (2010) p.463. DOI: 10.1126/science.1186986

3) S Jin, et al., Earth and Planetary Astrophysics (2023) arXiv:2305.05263

3) A. Grimberg et al., Science 314, (2006) 1133.

4) S. G.Love, and D. E. Brownlee, Science 262 (1993) 550.

5) J. F. Kerridge, Rev. Geophys. 31, (1993) 423.