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Need of 3-D Polar Cloud Climatology for
Earth Radiation Budget Study
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Cloud radiative effect is a major climate concern and controls the global climate
through earth radiation budget. Also, earth radiation budget is a good indicator of climate.
Earth radiation budget is a key factor for discussing the role of polar region in globat climate.

l. Earth radiation budget in the polar regions

. In the polar regions, snow and ice as the Antarctic and Greenland ice sheets or as a
sea ice with a large seasonal variation are strong controlling factors of radiation budget, but
clouds also have a large effect on radiation budget. Radiative forcing of clouds is shown in
Fig. l, as a zonal annual average. It is found that the maximum cloud forcing appears in the
high latitude, especially in the Southern Hemisphere around 60o S. Over the Antarctic
Continent, cloud forcing lies near 0, but this is at the top of the atmosphere, and cloud
forcing of each components at the surface becomes quite large. At the surface, shortwave
and longwave cloud forcing are in the opposite direction, and the net cloud forcing is small
positive (warming) throughout the year at the most region in Antarctica.
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Fig. I Latitudinal variation of ERBE annual and zonal average of slrortwave (cfsab), longwave (cfolr) and net
(cfnet) cloud radiative forcing.
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Fig. 2 shows the cloud amount dependence of radiative fluxes at the top of the

atmosphere (TOA) and the surface at the South Pole. For the longwave fluxes, smaller

dependence at the TOA and larger dependence at the surface, result in increase of cooling of

the atmosphere by clouds. As for the shortwave, quite similar variation of fluxes are seen at

the TOA and the surface, which means negligible effect for the atmosphere. The ratio R of

the cloud shortwave effectiveness (CE) at the surface to that at the TOA is defined as R =

CE(SFC) / CE(TOA). From this example at the South Pole, R = 1.0, while at Syowa

Station, R = 1.2. Thcre are many discussions about this relation (Li et al., 1995;Cess et al.,

1995; Ramanathan et al., 1995; Hayasaka et al., 1995). Frorn the present work, R does not

show such a,large value as 1.5 (large absorption) as reported for the low or mid latitudes.

This estimate was just made with comparing the surface observation. In order to estimate the

surface radiation budget from satellites, it is indispensable to have an information of cloud

vertical distribution, especially of cloud bottorn temperature/height. 3-D observation is

necessary to proceed radiation budget study of the atmosphere.

2. Difficulties in estimating earth radiation budget fluxes

There are still large unceftainties for the radiative effect of clouds over the snow and

ice surface of the Antarctic Continent. Ramanathan et al. (1989) estimated the shoftwave

cloud forcing to be positive from the ERBE results using clear sky fluxes. However, from

the precise comparison with the surface observation, Yamanouchi and Charlock ( 1995)
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Fig. 2. (a) CloutJ amount dependence of ERlls-8 top of the atmosphere shortwave absorption (ToP) and

shortwave rUroiptio'n ut the surface (SFC), (biClouO amolllt dependence of outgoingJongwave

radiation tof-nl'anJnet longwave nu* oiitt" turface (LWN), South Pole, Janury 1988' Solid and

dashed lines are regression lines.
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obtained negative forcing. ERBE clear sky fluxes seem to be erroneous over the snow and

ice surface.

Variations of the TOA shortwave absorption for ten days arc shown in Fig. 3, from

the whole data measured around the South Pole. Clear corresponding variation of the

shortwave radiation at the TOA and the downward longwave radiation at the surface are seen

for a time scale of about day, while therc are some points which diverse greatly from other

points. These points are estimated as "overcast" by the ERBE scene identification.

Radiative fluxes of ERBE are calculated from the measured radiances using the ERBF,

angular distribution model following the scene identification of the target. The problem lies

in the scene identification and also in the angular distribution rnodel for the large solar zenith

angle.

Cloud detection in the polar region is thus a urgent issue to be solved. Detection of

polar clouds still encounters many difficulties only frorn the two dimensional image data. It

is very important to have a reliable cloud detection from 3-D cloud observations.

3. Polar cloud climatology

Many efforts have been devoted to make a polar cloud climatology in the Arctic and

Antarctic, still large uncertainties exist (Fig. a). One of those efforts is ISCCP; however, the

original analysis seems to have difficulties over snow and ice, especially over the Antarctic

continent. Cloud distribution is also a large issue in winter Arctic, which is under the polar

night. Even the surface cloud observation is suspicious and the contribution of clear sky

precipitation is discussed (Wilson et al., 1993). Low level Arctic stratus, prevailing in

surrrmer Arctic, is also still a point of discussion. The relation of clouds and sea ice is a large

8801 South Pole (ERBE-CMDL)

Fig. 3. ERBE S-8 TOA shortwave absorption (SAB), shortwave absorption at the surface (SWN(SUR)) and

downward longwave radiation at the surface (LWD(SUR)), South Pole, January 1988.

o 200
E

.=

!-,uo
o
o

I  roo
(!

-
E

5s0

21 22 23 24 25 26 27 28 29 30 31
Dato

0L
20

i \ i

r l  i
diiri i,

i ' i ' i  i

sft .*7r,V u;tt;l-rg*,{vo'

i'#
i 'e

i i
i i

L+l-f

t

-193-



SEASOML VARIATIONS OF POLAR CLOUD AMOUNTS
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Fig. 4. Conparison of the seasonal variations of average cloud amount in the (a) Arctic and (b) Antarctic
determined by ISCCP and other cloud climatologies (Rossow et al., I993).

issue to be solved, since the radiative effects of sea ice and clouds are large, respectively, if
they act independently. However, if there were some dependence of cloud distribution to the
sea ice, then performance of the ice-albedo feedback should also be re-examined.

4. Conclusion

Satellite observation of 3-D cloud distribution in the polar region is necessary for ( I )
cloud climatology, (2) discussion of radiation budget and (3) data processing of earth

radiation budget.
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Need of 3-D Polar Cloud Climatology for
Earth Radiation Budget Study -
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1. The role of polar regions in the earth radiation budqet

2. Polar cloud climatology

3. Ditficulties in scene identification and estimating earth radiation
budget

- Need of 3-D cloud distribution

Zonal average of shortwave absorption, outgoing longwave
and net radiation

1987i88c annual average (4 months)
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8801 South Pole (ERBE CMDL NCDC)
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SEASONAL VARIATIONS OF POLAR CLOUD AMOUNTS
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Mean c,Iond covel-
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BB01 South Pole (ERBE-CMDL)

Figure 7. Mean cloud cover (in pcrcent) for (a) January and
(D) July, bascd on surfacc and ship observations (from Sci-
u,eiger and Key 11992), based on data from Warren et al.
Lle89j).
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Table 1. Scene Types for Angular Models

Scene Cloud coverage, percent Figure

Ulear over ocean
Clear ovcr land
Clear ovcr snorv
Clear over desert
Clear over land-ocean mix
Partly cloudy over occan
Partly cloudy over land or desert
Partly cloudy over land-ocean mix
Mostly cloudy over ocean
Mostly cloudy over land or desert
Mostly cloudy over land-ocean mix
Overcast
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Need of 3-D Polar Cloud Climatology

New Satellite Mission: ATMOS-81 (Cloud-Aerosol-Radiation)

Sensor
. LIDAR

- Cloud Profiling Radar (CPR)

- lmager (VlS, lR, MW)

- Earth Radiation Budget (ERBE, CERES?)

Orbit
- Low altitude (< 500 km)
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