LITE

C. M. R. Platt

(CSIRO, Division of Atmospheric Research)

LITE

Lidar In-Space Technologs Experiment.

9-Day mission on

Space Shu Hle DISCOVERY September 1994. About 45 hours clata 57° Inclined Orbit. Special Project (One of Several): Clouds in The 'WARM POOL', Tropical West Pacific-The 'BOILER HOUSE' Of The Global Atmosphere.

DOWNLINK DATA FLOW OVERVIEW

LITE RECEIVING TELESCOPE

Telescope:	Ritchey- Chretien Cassegrain
	Effective Focal Length - 190"
	Focal Ratio F / 5.1
	Obscuration Ratio - 0.11
	Reflecting Surface - Aluminum
	Telescope Tube - Aluminum, Titanium
	40" Diameter, 66" High (+22" Sun Shield)
	Weight - 520 lbs.

Component	Material	Surface Shape	Clear Aperture Diameter (inches)	Weight (Ibs)
Primary Mirror	Beryllium (Kanigen Coated)	Concave Quasi-Hyper Boloid	37.25	125
Secondary Mirror	Fused Quartz	Convex Hyperboloid	12.25	16

LITE Instrument Parameters						
Output Wavelength (nm)	1064	532	355			
Output Energy (mJ)	440	560	160			
Laser Pulse Length (ns)	30	20	20			
Beam Divergence (mr)	1.4	0.94	0.80			
Detector QE (%)	33	14	21			
Field-of-View	Selectabl	le: 1.1 mr, 3.5	mr, annular			
Sampling Interval (m)	15					
Primary Mirror Diameter (m)	0.985	pur 175				

LITE TECHNOLOGY OBJECTIVES

LITE System Functional Diagram

For Shuttle at 160 Nautical Miles (296 km) Traveling at 7.4 km/sec

LITE TECHNOLOGY OBJECTIVES

- EVALUATION OF LIDAR SYSTEM OPERATIONS IN SPACE
 - Laser operations and lifetime
 - Thermal dissipation and control
 - Alignment control
 - Environmental levels
 - Autonomous operations
- EVALUATION OF LIDAR TECHNIQUES IN SPACE
 - S/N verification
 - Resolution (∆Z, ∆H)
 - Atmospheric characteristics at different wavelengths
 - Atmospheric characteristics at different altitudes
- PROVIDE A TEST-BED FOR NEW LIDAR TECHNIQUES
 - Different LIDAR techniques
 - Emerging laser technologies
 - Wavelength control

-45-

Lidar integrated Backscatter

The integrated backscatter $\gamma'(\pi)$ through a cloud can be written as:

$$\gamma'(\pi) = \frac{k}{2\eta} (1 - \exp(-2\eta \int_{z_0}^{z_0} \sigma_c(z') dz'),$$

k is the isotropic (radar) backscatter to extinction ratio,

n is a multiple scattering factor. Also

$$\gamma'(\pi) = \frac{k}{2\eta}(1-\tau^2)$$

 σ is the cloud volume extinction coefficient.

 $\boldsymbol{\tau}$ is the single path transmittance through the cloud.

When τ tends to zero,

 $\sqrt{(\pi)}$ tends to $k/2\eta$

Thus when a cloud is *completely attenuating* to the laser pulse, the integrated backscatter gives information on the **backscatter phase function** and therefore the cloud microphysics in terms of an effective cloud particle 'type'.

$$-47-$$

-49-

Height M

Latitude (dearc

Comment: Detection Limitations of Space Lidar

There is a large range in atmospheric backscatter Coefficient. This varies from ~ 10-7 m-'sr-' for Rayleigh and arrosol ton5×10-3m-15x-1 for dense (water) clouds. We need detectors with large dynamic range - or suitable 'in-flight' adjustable systems. (~ 104 to 105 range (?)).

Integrated Backscatter vs. Transmittance, 355 nm LITE Data Take A, Orbit 13, MET 00/18:35:14 to 00/18:36:28

Conclusions

- LITE can give excellent vertical definition of cloud boundaries and structure.
- LITE can detect layers of thin cirrus and aerosol.
- Large variations in lidar integrated attenuated backscatter have been detected in the tops of opaque tropical mesoscale convective systems, including a tropical cyclone.
- The fluctuations in integrated backscatter are interpreted as variations in cloud microphysics.
- The integrated backscatter in semitransparent clouds can be correlated with the cloud two-way transmittance.
- Cloud transmittance can be measured very easily employing the attenuated molecular backscatter in the 532 nm or 355 nm lidar channels.
- Multiple scattering effects in the lidar return can be dominant at times. Low water clouds exhibit considerable pulse stretching, whereas cirrus cloud do not.

