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Multiple scattering calculations have been carried out for space borne
lidar. The calculations have been done principally by Monte Carlo radiative
transfer. The special emphasis is on the multiple scattering signal that is
received after the ground return signal when without multiple scattering there will
be no signal. lt has been shown that the multiple scattering for space borne lidar
will be a much more significant factor than for airborne systems for similar
system field-of-view (FOV) (Spinhirne, 1982). Even for aerosol haze there can
be a significant multiple scattering factor. The ground single scattering return
will typically be followed by a significant multiple scatter signal when aerosol or
thin cloud atmospheres are involved. The signal principally results from second
order scattering consisting of a forward scatter event in the atmosphere and a
ground scattering. For surface altimetery such as planned for the GLAS
(Geoscience Laser Altimetery System) mission, calculations show that the
multiple scatting is a pulse length stretching effect that can lead to altimetry error
of several tens of centimeters. At FOV of one milliradian or more , the multiple
scatter signal from a ground and atmospheric fonrard scattering can persist for
several micro seconds. There is a preferential forward scatter angle as a
function of reciever annular FOV. Since aerosol forward scattering is more
directly related to extinction than the 180o backscatter that is principally
observed by lidar, it is suggested that the post ground return signal from multiple
scattering could possibly be applied to obtain a normalization to improve the
retrieval of optical thickness from lidar.

Reference:
J. D. Spinhirne, "Lidar clear atmosphere multiple scattering dependence on
receiver range," App!*-Qp,lL, 21, 2467 (1982).
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Surface Altitude Error From Atmosphere Scattering
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