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The conversion rate from cloud water/ice to rain/snow water and the precipitation
efficiency change largely depending on the horizontal scale and type of cloud systems as
shown in Fig.1. Although many researchers have parameterized and estimated these
values in their numerical models (..g., Kessler, 1969; Ogura and Takahashi, 197I;
Sasamon,1975; Roads, L978; Lin et al., 1983; Fovell and Ogura, 1988; Ikawa, 1988;
Ferrier et al., 1996; Szeto et al., 1997), only a limited number of observational studies
have reported these values (Bratram, 1952; Newton, 1966; Auer and Marwitz, 1968;
Dennis et al., 1970; Fankhauser, 197L; Foote and Fankhauser, 1973; Ogura and Cho,
1973; Yanai et al., L973; Hobbs et a1., 1980; Takeda and Natsuki, 1982; Fankhauser,
1988). Especially, there are no reports on global distribution of these values and their
temporal change.

Rainfall/snowfall intensity, cloud water/ice amount and water vapor flux are
necessary to calculate the conversion rate and the precipitation efficiency. Unfortunately,
we cannot simultaneously measure these values by using any artificial satellites at the
present moment. Figure 2 illustrates Oth order and qualitative global distribution of the
conversion rate and the precipitation efficiency. Figure 2a and 2b show the global
distribution of the ratio between SSMI(rain) and SSMI(cloud water) and that of the ratio
befween SSMI(cloud water) and SSMI(vapor). Here, SSMI(rain), SSMI(cloud water)
and SSMI(vapor) mean L0-years (1986-1996) average of monthly mean rainfall rate,
that of monthly mean cloud water amount, and that of monthly mean water vapor
amount measured by SSMI (all data were provided by Remote Sensing Systems). The
conversion rates within midlatitude cloud of northern hemisphere are comparable with
those within cloud systems in ITCZ, pnd show seasonal change (winter maximum).
Contrary to the conversion rate, the SSMI(cloud water)/ SSMI(vapor) ratio of
midlatitude and highlatitude cloud systems is much larger than that of tropical cloud
systems. These figures suggest that water vapor is more efficiently converted into
cloud water and rainwater in mid- and high latitudes than in the tropical
region.

The conversion rate and the precipitation efficiency depend not only on
microphysical properties of clouds but also on multilayer structure of cloud systems, for
example, the seeder-feeder process. Also, it is apparent that the exact estimation of the
amount of snowfall both over the ocean and land is essential to study water and energy
cycles in cold regions and their effect on climate. Therefore, the spaceborne cloud radar
will undoubtedly contribute to estimate and deduce these values and properties.
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Figure 1: Conversion time (s) conesponding to horizontal scale of phenomena (Takeda

et al., 1990)
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Figure 2: Tlte global distribution of the ratio between SSMI(rain) and SSMI(cloud

water) (2a) and that of the ratio between SSMI(cloud water) and SSMI(vapor)

(2b). All data were provided by Remote Sensing Systems.
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