DETECTION OF OZONE BY DIFFERNTIAL ABSORPTION USING CO LASER

K.Asai and T. Igarashi
Radio Research Laboratories
Ministry of Posts and Telecommunications
Koganei, Tokyo, Japan

ABSTRACT

The detection and monitoring techniques of air pollutants using lasers have been discussed previously by a number of authors. $^{1-4}$) This paper describes new detection method for 0_3 appling a differential absorption technique with the CO_2 laser. A merit of this method using the CO_2 laser is very simple in comparison with one using ir diode lasers and ir parametric oscillators. This method can be used not only for 0_3 but also for C_2H_4 and NH_3 .

Since 0_3 belongs to an asymmetric top molecule, ir absorption spectrums of 0_3 in ambient atmosphere show no resolvable fine structure. The ν_3 band of 0_3 overlaps a frequency range of the $(00^\circ 1 - 02^\circ 0)$ band of $C0_2$ laser. On the other hand, 0_3 has not absorption band in a frequency range of the $(00^\circ 1 - 10^\circ 0)$ band of $C0_2$ laser. (see Fig.1) By using one laser line in the $(00^\circ 1 - 02^\circ 0)$ band and one line in the $(00^\circ 1 - 10^\circ 0)$ band, it is feasible to apply the differential absorption technique to the detection of 0_3 in the atmosphere.

Fig.3 shows the block diagram of the detection system. The resonator is constructed for the $(00^{\circ}1-02^{\circ}0)$ band by a grating (G) and a mirror (M_1) , and for the $(00^{\circ}1-10^{\circ}0)$ band by the mirror (M_2) , respectively. A chopper is used for an alternate oscillation, and a reflecter is for returning a laser beam. The concentration of 0_3 is determined by measuring the intensities at each of the two wave lengths.

Using a absorption coefficient, measured with the ${\rm CO}_2$ laser by the authors (see Fig.2), at the wavelength corresponding to P(14) and assuming 1 km path and ${\rm AI/I=0.01}$, the system is estimated to be able to measure the concentration of approximately 0.03 ppm. This value corresponds to the typical concentration in the ambient air. A discussion of the result by these measurement will be presented.

Reference

- 1) H.Inaba and T.Kobayashi, Nature, 224 (1969) 170
- 2) T. Igarashi, 5th Conference on Laser Radar, Williamsburg, Virginia, 57 (1973)
- 3) E.D.Hinkley and P.L.Kelly, Science, 171 (1971) 635
- 4) P.L.Hanst, Appl. Spectro., 24 (1970) 161

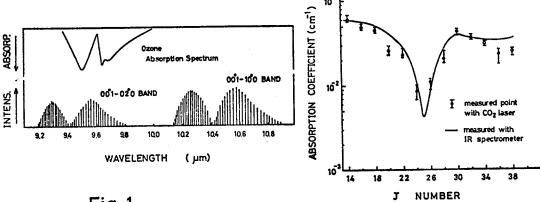
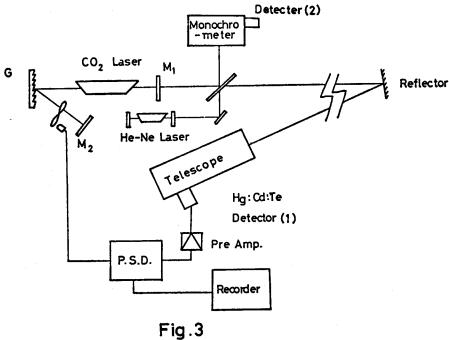



Fig.1

Fig.2

