MEASUREMENT OF NO₂ CONCENTRATION IN THE ATMOSPHERE USING ABSORPTION TYPE TWO-WAVELENGTH DYE LASER RADAR

T. Tsuji, Y. Higuchi and H. Kimura*
Research and Development Center
and Instrument and Automatic Division*
Tokyo Shibaura Electric Co., Ltd.
Kawasaki, Japan

ABSTRACT

The absorption type laser radar that can automatically and remotely measure the NO_2 concentration in the atmosphere has been developed. The NO_2 absorption spectrum has a train of definite peaks and valleys between about 4000Å and 5000Å. A two-wavelength laser beam corresponding to a peak and a valley of NO_2 absorption spectrum is transmitted and the intensity of scattered light from the target is measured. The concentration is obtained using the relation (1).

$$\bar{n}L = \frac{1}{\sigma_1 - \sigma_2} \ln \frac{I_{01} I_2}{I_1 I_{02}}$$
 (1)

where \overline{n} : mean value of NO₂ concentration, γ, γ : cross sections of absorption at λ_1 and λ_2 respectively, \overline{L} : light path length, $\overline{I_1}, \overline{I_2}$: intensities of detected laser power scattered from the target at wavelengths λ_1 and λ_2 , $\overline{I_{01}}, \overline{I_{02}}$: intensities of monitoring laser power at wavelengths λ_1 and λ_2 .

The transmitter consists of a pulsed DAMC organic dye laser and simple optics. The dye laser is numbed by a pulsed N_2 laser and generates two wavelengths (4630Å) and (4658Å) alternately (peak power 5kW, pulse width 5ns, spectrum width 3Å, repetition rate 75pps).

The detecting system consists of a reflection-type 50cm-diameter telescope, optical filters for intercepting background-noise, a photomultiplier and a photodiode (laser mower monitor). Elimination of the monochromator allows less attenuation of received light and results in larger s/n ratios. Signals are digitalized, calculated by a TOSBAC-40C mini-computer and the values of NO₂ concentration are type out. The above measurement is automatically performed by the signal from a clock.

This apparatus has been set up on the sixth floor of Toshiba R & D Center. Automatic measurement at one minute interval was carried out for

30 hours, detecting the scattered light from the wall of a building about 1 km apart from the observing point. The result was consistent with the result obtained by the Saltzman method. Concentration transition of 3 ppb was reliably detected when 1000 data are averaged. This corresponds to a relative intensity measurement with a precision of 0.2%.