MEASUREMENT EQUIPMENT FOR THE DETERMINATION OF LASER OUTPUT WAVELENGTH

H. Herrmann and Ch. Werner

German Establishment for Aeronautical and Space Research (DFVLR)
Institute of Atmospheric Physics
D-8031 Oberpfaffenhofen, Fed. Rep. of Germany

ABSTRACT

The measurement equipment, which we describe here, is used as an additional part of the output energy monitor. The figure illustrates the principle of the wavelength measurement using a well known narrow-band interference filter. The output energy of the laser, which is in our case a pulsed ruby laser, is E_0 ; part of the laser radiation reaches the energy monitors E_1 and E_2 , after having passed the beamsplitters 1 and 2. The figure (right) shows the scheme of the energy monitor. The laser beam passes through a gray-filter, an interference filter ($\Delta\lambda$ = 20 Å), and a lig tpipe and thereafter impinges on a photodiode. The electrical signal is the measured. The calibration of E_1 and E_2 are carried out with a calorimeter (E_0). In this case is

 $E_1 = r_1 E_0 T_1$ and $E_2 = r_2 E_0 T_1$ (r = reflection factor of the beam-splitter)

If a small band interference filter (a) = 1 Å) with a transmission $T_2 = a \cdot \lambda$ in the wavelength region of interest is introduced in front of the energy monitor E_2 , one obtains

$$E_2 = r_2 E_0 T_1 T_2 .$$

The ratio of both values is

$$E_2/E_1 = r_2/r_1 \cdot T_2 = r_2/r_1 \cdot a \cdot \lambda$$
 or $\lambda = const \cdot E_2/E_1$

It is therefore possible to give directly the wavelength if a suitable choice of signal processing is carried out.

Tests and construction of this equipment for our lidar system IV will be reported.

Fig.: Principle of the wavelength measurement

٤

٠,