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ABSTRACT 

LIDAR is a remote sensing tool of great practical 

importance in environmental monitoring sciences. Signal 

processing for LIDAR applications involves highly 

nonlinear models and consequently nonlinear filtering. In 

this paper, we applied a new method, empirical mode 

decomposition to LIDAR signal pre-processing. 

Performance evaluation of the EMD denoising approach 

shows that it is very effective and superior to the 

traditional averaging method. 
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1. Introduction

Lidar technology makes it possible to obtain profiles 

of meteorological parameters and atmospheric 

constituents. Lidar backscatters contain a variety of noise 

and interferences, such as thermal noise, background 

noise and atmospheric turbulence. Attenuating this kind 

of noise is essential for the precise measurement and for 

subsequent data analysis. Lidar researchers usually just 

adapt a multiple-pulse average or running-average 

approach to remove noise in lidar signal [1-3]. But in 

practice, such average approach is inefficient to handle 

the nonstationary noise especially in the far distance.  

The conventional multiple-pulse average approach is a 

kind of low-pass filtering process based on least squares. 

System errors are assumed to have a Poisson distribution, 

and average over n pulses decrease the noise magnitude 

from 1 to1 n , However, such a process has a large 

bandwidth and poor cut-off spectral property. It is also 

difficult to distinctly define the statistical properties of 

the signal because the statistical properties of lidar signal 

are unknown a priori.

The Fourier smoothing technique has also long been 

used to reduce noise. A common assumption of this 

process is that the information of a signal can be 

separated from the noise because the signal varies slowly 

in comparison with the noise. Since lidar signals 

represent spatially varying information, setting a 

particular cutoff frequency may result in signal distortion. 

Even wavelet analysis is essentially an adjustable 

window Fourier spectral analysis.[4] Because of the 

limited length of the basic wavelet function, it is difficult 

for wavelets to quantitatively define the 

energy-frequency-time distribution. 

Recently, a new nonlinear technique, Empirical Mode 

Decomposition (EMD), has been developed by Huang et 

al. for adaptively representing nonstationary signals as 

sums of intrinsic mode functions (IMFs).[4, 5] They are 

derived directly from the data and are not restricted by 

linearity or a priori conceptions. The method allows the 

modes to be nonlinear while still requiring local 

orthogonality in a least squares sense. In this work, the 

lidar data obtained from our Doppler lidar are analyzed 

by EMD. We propose to use the power spectrum of the 

intrinsic mode functions to determine how to process the 

denoising. The results by removal of the high frequency 

IMF are evaluated by comparing the SNR and the power 

spectrum. 

2. Lidar System 

The Doppler lidar receiver in our MIDWiL system 

(Mie-Rayleigh Doppler wind lidar) is based on the iodine 

edge filter. The details of the lidar system design have 

been described elsewhere [6] and will be briefly 

summarized here. The laser is an injection seeded, lamp 

pumped, frequency doubled Nd:YAG laser which can be 



tuned and locked to the iodine absorption spectrum. The 

laser pulse energy is around 100 mJ at 10 Hz repetition 

rate. The wind speed is retrieved from the ratio of signals 

from frequency discrimination channel (iodine filter) and 

energy reference channel. The lidar returns can be 

processed under a varied mixture of the Rayleigh and 

Mie scattering. Because of this unique property, the lidar 

data cover the low altitude atmosphere that varies more 

rapidly and is more sensitive to the ground interference 

than the high altitude atmosphere. The lidar signal is a 

combination of non-stationary noise, such as 

instrumental DC offset, thermal noise, atmospheric 

background radiation and other stochastic turbulences, 

etc. Therefore, signal processing calls for rapid and 

efficient techniques.  

3. Empirical Mode Decomposition 

EMD method decomposes the time series data into 

IMFs that have a zero local mean. The local mean is 

extracted by calculating the mean of the envelope of the 

data. This mean is iteratively subtracted from the current 

data until the residual has a local mean. This residual is 

then the first IMF that contains the highest frequencies of 

the time series. This process is so called ‘sifting’ process. 

The subsequent IMFs can be found by subtracting the 

first IMF from the original data and repeating the above 

‘sifting’ process. In this way all the IMFs can be 

extracted and the last IMF usually is a monotonic trend. 

Due to the limit of space in this paper, the process of 

decomposition is not shown and can refer to reference 4. 

The lidar data is a kind of typical non-stationary time 

series. In lidar inversion studies, the lidar signal is 

usually normalized to the transmitting range. The noise 

components are also amplified in this range calibration 

process so that the real signals at far distances may be 

submerged by the background noise. The necessary 

conditions needed to describe a nonlinear and 

non-stationary time series in terms of basis function are 

completeness, orthogonality, locality and adaptiveness. 

The empirical mode decomposition (EMD) method was 

developed to address these conditions and has since been 

found to be very useful. 

4. Experiments and analysis 

We herein use a wind profile to illustrate the 

EMD process. Fig. 1 shows the original wind profile. 
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Fig. 1. The original wind profile. 
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Fig. 2. The intrinsic mode functions of the data: 

IMF1~IMF8 are IMFs; H is the trend. 

Fig. 2 summarizes all the IMFs obtained from 

EMD processes. In this way the IMFs will generally 

be ordered from high to low frequency although they 

will rarely have a constant frequency and the last IMF 

often contains a trend. Comparing this with the 

traditional Fourier expansion, one can immediately 

see the efficiency of the EMD: the expansion of a 

turbulence data set with only nine terms. From the 

result, one can see a general separation of the data into 

locally non-overlapping time scale components. 



-200

-150

-100

-50

0

50

Time Sample

N
o
rm

a
liz

e
d
 F

re
q
u
e
n
c
y

20 40 60 80 100 120

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fig. 3. Hilbert spectrum of the IMFs 

Once the modes are defined, a Hilbert Transform can 

be used to calculate local frequencies. [4, 7] The Hilbert 

spectrum of the IMFs is an energy-frequency-time 

distribution. We assume the high frequency IMFs to 

contain only noise and turbulence. This is a conservative 

estimation because those IMFs may contain useful signal. 

Whereas the energy of the high frequency IMFs are of 

little weight in the Hilbert spectrum, especially the first 

IMF, it is still practicable to improve SNR by subtracting 

high frequency modes from the data. In addition, the high 

order IMFs often contain small spatial (or time) scale 

fluctuations much less than that of the wind speed we 

concerned. Therefore, the high frequency modes can also 

be removed to get proper signal resolution. 

In practical processing, how many IMFs to be 

removed are determined by the noise level and range 

resolution of lidar signal. The Power Density Spectrum 

(PDS) herein is used to analyze the IMFs of lidar signal 

and denoised data. Fig. 4 shows the lidar signal with 100 

shots averaged. The PDS of its first six IMFs are shown 

in Fig. 5.  

In this work, the centre of 5th IMF’s PDS locates at the 

0.02 Hz corresponding to 50 m spatial resolution that 

satisfies the resolution requirement of line-of-sight 

velocity retrieval. In other words, regardless of noise 

distribution there are five high frequency IMFs at most 

that can be subtracted in order to obtain 50 m resolution. 

Denoised signal here is achieved by subtracting the 

first 5 IMFs from the original signal (Fig. 6). The 

denoised signal is more smooth and less of fluctuations 

than the original signal (gray dash line). The fluctuations 

with large magnitude but small spatial-scale are 

sufficiently suppressed in far distance. At the same time, 

local structures of lidar return are preserved. For example, 

a strong backscattering at 8 km is not distorted after 

denoising. As mentioned in section 2, wind speed is 

calculated from the ratio of backscattered returns. EMD 

denoising can improve the retrieve accuracy especially in 

far distance.  
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Fig. 4.  The range corrected lidar return signal 
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Fig. 5.  The power density spectrum of the first six IMFs 

 of the lidar signal. 
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Fig. 6. 100 shots averaged data denoised by EMD. 

We compared this method with the multi-pulse 

average. The 1000 shots averaged data successive to the 

100 shots averaged lidar signal in Fig. 4 are compared. 



The PDS of 100 shots averaged, 1000 shots averaged 

and denoised data are shown in Fig. 7. The most 

attractive specific is the EMD denoising approach only 

needs a small quantity of data for average when it 

achieves comparative results and obtains instantaneous 

atmospheric motion. With this method, lidar researchers 

may reduce the measurement time and the system can be 

less power consuming, which are important for the 

real-time monitoring and the low cost laser transmitter. 

EMD denoising is also an option for lidar working 

on the fast scanning mode such as the Doppler lidar on 

PPI (Planar Position Indicator) mode and the volume 

imaging lidar. 
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Fig. 7. The PSD of 100 shots averaged data, denoised data 

and 1000 shots averaged data. 
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Fig. 8. 1000 shots averaged lidar return signal and 100 shots 

averaged data denoised by EMD. 

5. Result and discussion 

In conclusion, it is the first application of the 

Empirical Mode decomposition to the analysis of lidar 

data. EMD analysis is implemented to reduce the noise 

and keeps the significance of the signal, which is 

possibly the only computational method of real time lidar 

signal processing. Thus, EMD denoising is attractive in 

the case of scanning lidars demanding fast measurement. 

Of course, this analysis underestimates the signal to noise 

ratio because there often is some signal in the first mode. 

However, it can work as conservative estimate. 
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