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ABSTRACT 
 

A new approach is suggested in the paper to the ap-
proximate consideration of backscattering anisotropy in 
lidar returns. It reduces the solution of the problem to 
the calculation of irradiance distribution in the medium. 
The solution has been obtained with the use of the 
Green's function method and the optical reciprocity 
theorem. The principal assumption used in the deriva-
tion of the new lidar equation consisted in the δ- ap-
proximation of the Green's function in terms of the an-
gular coordinate. At the same time the information 
about the scattering phase function both in the small-
angle region, and in the vicinity of backscattering region 
is completely kept. The obtained expressions were ap-
plied to assess the effect of the backscattering anisot-
ropy in the calculation of the contribution from multiple 
scattering in sensing of the liquid droplet cloud and the 
seawater.  

 
1. FORMULATION OF THE PROBLEM 
 
A considerable progress has been made by now in 

construction of numerical-analytical models describing 
the lidar signal with the allowance made for multiple 
scattering. Simplifications usually used for this purpose 
account for the small-angle multiple scattering and only 
one event of scattering to a large angle [1-3]. 

In solving the problems of radiative transfer 
through the media with anisotropic scattering in the co-
efficient of directed light scattering )()( γσ=γβ x  it is 
a usual practice to separate the forward peak of 

)()( 111 γσ=γβ x , which describes the scattering at 
small angles. Designating the residual part as 

)()()( 12 γβ−γβ=γβ , we can write the following 
equation for the normalized scattering phase function: 

 
( ) ( ) ( )γ+γ=γ 2211 xaxax   (1) 

 
with the weighting coefficients σσ= /11a  and 

σσ= /22a , 21 σ+σ=σ , where σ is the scattering 
coefficient. In this case account of only one event of 
scattering at the large angle results in the solution of the 
following non-stationary problem of the radiative trans-
fer theory [4] 
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),,( zyx=R  is the radius-vector of a point; n is the 

unit direction vector; Q is the source density function; ε 
is the extinction coefficient; ),(1 nR ′I  is the spatial-
angular intensity distribution of the radiation at the for-
ward propagation of the sounding pulse. The function 

),(1 nR ′I  satisfies Eq. 2 under the condition 0=Q .  
Within the framework of the small-angle approxima-
tion, the intensity ),(1 nR ′I  has a significant value 
only in the small vicinity of the initial direction of the 
light beam propagation. Let this direction coincide with 
the direction of the axis Oz. We assume that the angle 

)^( nn ′=γ  between the directions n and n′ is close to 

π and, consequently, the angle γ−π=θ  is small. On 
these assumptions, the right-hand side of Eq. 4 can be 
presented as a double integral�
 

�� ⊥⊥⊥⊥π⊥ ′′′+σ= nnRnnnR dIxQ ),()(),( 12 , (5) 

 
where ⊥n  n and ⊥′n  are the projections of the vectors 

n and n′ onto the plane, orthogonal to the axis Oz, 
)()( 2 θ−π=θπ xx . It is necessary to set boundary 

conditions for the solution of Eq. 2. For simplicity, we 
will consider below the problem for the case that the 
medium is irradiated with a point source of a pulsed 
unidirectional (PUD) radiation, which generates the 
following intensity distribution on the medium bound-
ary z = 0 
 

)()()(),,0,( 00 ttzI δ−δ−δ== ⊥⊥⊥⊥⊥⊥ rrnnnr   (6) 

at 0,0 00 == ⊥⊥ rn .  
 
2. SOLUTION METHOD 
 
We use the method of Green's function and the op-

tical reciprocity theorem for the solution of Eq. 2 with 



the boundary condition (6). The intensity 
),,,(1 tzI ⊥⊥ ′nr  in Eq. 5 can be presented as 

 

),/(),,,0,(

),,,(

00

1

cztzzG

tzI

−δ′→==
=′

⊥⊥⊥⊥

⊥⊥

nrnr
nr

    (7) 

 
where ),,,0,( 00 ⊥⊥⊥⊥ ′→= nrnr zzG  is the small-
angle Green's function of the stationary problem. The 
function ),,,0,( 00 ⊥⊥⊥⊥ ′→= nrnr zzG  has a sharp 

peak in the direction ⊥⊥ =′ 0nn  of the light beam irra-
diating the medium and decreases fast as the angle 

⊥′=γ′ n  deviates from zero. The scattering phase 

function )( ⊥⊥π ′+ nnx  to the contrary, changes much 

more slowly. Therefore, we can expect that substitution 
of the small-angle Green's function by the two-
dimensional δ-function  
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does not lead to a large error in the integral (5). The 
normalizing factor 
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in Eq. 8 is the spatial irradiance, generated by the PUD 
source (6) at the point ⊥r . Taking into account the ap-
proximation (8), we obtain the following equation for 
the source function of the stationary problem: 
 

)()(),( 12 ⊥⊥π⊥ σ= rnnR ExQ .           (10) 

 
Assume then that the observations in lidar meas-

urements are conducted in the plane z = 0. Then, using 
the Green's function method and the optical reciprocity 
theorem [5], we can write the following equation for the 
light field in the observation plane, corresponding to the 
source density ),( ⊥nRQ : 
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Here S is the integration plane 2/' ctz = . By analogy 
with the case considered in Eq. 8, in the integration over 

the angular variable in Eq. 11, the Green's function is 
approximated as: 
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is the spatial irradiance generated at the point 

),( z′′= ⊥rR  by a fictitious PUD radiation from a 

source located at the point ⊥r  of the plane z = 0 and 

emitting along the direction ⊥− n . This leads to the 
following equation for the light field intensity distribu-
tion in the plane z = 0: 
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In the small-angle approximation, the property of in-
variance is true for the spatial irradiance: 
 

)(),,( 02 ⊥⊥⊥⊥⊥⊥ ′−−′=′′→ nrrrnr zEzE ,  (15) 
 
where )(0 ⊥rE  is the beam spread function (BSF), that 

is, the irradiance distribution in the plane z, generated 
by the PUD radiation from a source located at the origin 
of coordinates and emitting along the direction of the 
axis Oz. Taking into account the property (15), the in-
tegral in Eq. (14) takes the form of the two-dimensional 
convolution in the plane S: 
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Using Eq. 16, we can easily calculate the power of the 
lidar return for the given parameters of the receiving 
system. Let, for example, the sensitivity function of the 
lidar receiving system has a circular symmetry and the 

stepwise behavior over the variables ⊥= rr  and 

⊥=γ n . Then, if the lidar emits a δ-pulse with the 

unit energy, the lidar return power detected at the time 
czt /2=  is described by the common equation: 

 
)](1)[()( r1 γ+= mzPzP ,  (17) 



where )(1 zP  is the lidar return in the single scattering 

approximation. The correction factor )( rγm  specifies 
the ratio of multiply and singly scattered components of 
lidar return and for considered conditions has the form 
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Eq. 18 is derived under additional conditions: 

rr / γ> Rz  and ),0()( ππ =γ xx  zR /0 r≤γ< , rR  

and rγ  are the radius of the entrance pupil and the 
field-of-view (FOV) half-angle of the receiving system. 
Eqs. 18-21 employ the following designations: ν is the 
spatial frequency; (.)0J  is the first-kind zero-order 

Bessel function; )(~
1 px  is the Hankel transform of the 

small-angle scattering phase function. 
Eqs. 17-21 give full description of the lidar return 

formed due to multiple scattering at small angles and 
the single anisotropic scattering, taken into account near 
the backward direction.  

 
3. RESULTS OF NUMERICAL SIMULATION 

 
In this Section, we consider some examples of the 

function )( rγm  (18) calculated taking into account the 
backscattering anisotropy as compared with similar re-
sults obtained assuming )(γπx  = const. The calcula-
tions are based on two basic models of scattering media, 
which describe properties of clouds and sea water. The 
model type of “Cloud C1” [6] is considered, in which 
the modal radius of particles sr  is varied in addition, 
when optical-microphysical properties of a cloud are 
specified.  

The scattering phase function is shown in Fig. 1 at 
a wavelength λ = 0.532 µm in the vicinity of a back-
ward direction for cloudy particles with different modal 
radius. General feature for all curves, given in Fig. 1, is 
the sharp decrease at moving from the scattering angle 
180°, and the presence of a diffraction maximum (glory) 

in the range of angles 177 - 179°. The location and am-
plitude of the maximum depends on size of modal ra-
dius of particles sr .  
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Fig. 1. Model dependences of the scattering phase func-
tion for the cloud particles with modal radius sr  = 4, 

5.33, 6, 8, and 10 µm (curves 1–5). 
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Fig. 2. The ratio )( rγm  calculated with (curves 1-3) 
and without (curves 1'-3') the regard for the backscat-
tering anisotropy, at the modal radius of the cloud parti-
cles sr  = 5.33 (1, 1'), 8 (2, 2'), and 10 (3, 3') µm. 

 
The dependences of ratio )( rγm  are presented in 

Fig. 2, corresponding to the specified model of cloudy 
medium. The input data for calculations are the follow-
ing: the distance z = 2 km; the optical depth τ = 3, and 
the layer geometrical length is 1 km. From Fig. 2 it fol-
lows that failure to take into account the backscattering 
anisotropy results in the overestimated quantity of 

)( rγm . The influence of this factor grows with in-
crease of the sizes of particles and optical thickness of a 



layer and becomes especially appreciable at FOV of the 
receiver rγ > 5 mrad.  

The following example relates to a problem of sea 
water sensing with the lidar located at a height of 300 m 
above the sea surface; the signal is detected from the 
depth of 20 m. We assume that the main contribution to 
scattering in sea water comes from suspended particles 
of two fractions: the finely dispersed fraction of mineral 
origin with sizes r < 1-2 µm (t – fraction) and the 
coarsely dispersed fraction of organic origin with sizes 
r > 1 µm (b - fraction) [4]. 
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Fig. 3. Calculated scattering phase functions for the 

model of suspended particles in the sea water. 
 
The typical dependences of scattering phase func-

tion )(t θx , )(b θx  and their weighted sum )(θx  are 
shown in Fig. 3 [7]. When modeling the optical charac-
teristics of the suspension, the size distribution of t - 
fraction is described by the power law with the index 
ν= 4. The modified gamma-distribution with the modal 
radius sr  = 10 µm is chosen for modeling the size dis-
tribution of b-fraction. Curve 3 in Fig. 3 relates to the 
case when the contribution of t-fraction to the total scat-
tering coefficient is equal to 20%.  

As can be seen from Fig. 3, the scattering phase 
function )(t θx  looks nearly isotropic one in the vicin-
ity of a backward direction. On the contrary, the scatter-
ing phase function )(b θx  has well-marked diffraction 

peak about the scattering angle θ = 179°, which is kept 
in the total scattering phase function. With increasing 
the sizes of particles of b - fraction their contribution to 
backscattering grows. At the same time, the amplitude 
of the diffraction peak is increased, and its position is 
shifted nearer to the scattering angle θ = 179°.  

It is obvious, that the indicated factors cause the 
enhancement of the influence of the backscattering ani-
sotropy on the angular behavior of the ratio )( rγm  

with the growth of the particle modal radius sr  of b - 
fraction. It is confirmed by the results of calculations of 
ratio )( rγm , given in Fig. 4 for a layer with the optical 
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Fig. 4. The ratio )( rγm , calculated with (curves 1–3) 
and without (curves 1'–3') the regard for the backscat-
tering anisotropy, at the modal radius of the b-fraction 
particles sr  = 8 (1, 1'), 10 (2, 2'), and 12 µm (3, 3'). 
 
depth τ = 2. In a given example, unlike cloud sensing, 
neglecting of the backscattering anisotropy results in 
underestimating the value of ratio )( rγm . This is ob-

served for rγ  > 9 mrad and sr  > 10 µm. 
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