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ABSTRACT 

The paper presents the preliminary results of the 
numerical solution (the Monte-Carlo method) of the 
nonstationary radiation transfer equation in the 
optically dense disperse medium. As a model of the 
medium, the presence of a homogeneous water cloud is 
assumed. It is expected that an ultra short (about 50 fs) 
and ultra intense laser pulse stimulates the 
nonstationary transition process in the scattering 
particle volume resulting in time transformation of 
their optical characteristics and, primarily, the 
scattering phase function. To calculate the time 
dynamics of the scattering phase function of a laser 
pulse by a transparent spherical particle the 
nonstationary Mie theory was used, based on the 
Fourier representation of the original light pulse and 
the linear theory of radiation diffraction at a sphere. In 
our case, the scattering particle properties are 
characterized by the spectral response function 
representing the traditional Mie series written for all 
the frequencies from the spectrum of the original pulse. 
The scattered and internal fields are written in the form 
of an integral of contraction from the pulse spectrum 
and the function of the spectral particle response. 

1.   INTRODUCTION 

Laser radiation is special for its broadbandness. The 
spectral pulse width Δωp is proportionate to the pulse 
duration tp and can make Δωp ~ 1015-1016 Hz at tp ≈ 10-

14-10-15s. So wide a frequency range enables a 
simultaneous excitation in a particle of a large number 
of high quality electromagnetic vibrational eigenmodes 
(the whispering gallery modes, the WG), which were 
recorded experimentally and then proved theoretically 
[1]. When the frequency of an optical wave incident on 
a particle coincides with one of the particle 
eigenmodes, this results in resonant excitation of the 
internal optical field, whose spatiotemporal distribution 
is fully determined by the field of the excited mode. 
The lifetime τR of most high-quality resonances (WG 
modes) in micron-sized particles is as a rule of the 
nanosecond order. Therefore, if the original pulse 

duration is comparable to or less than the time τR , then 
its scattering at a particle can have a nonstationary 
character. 

2.   GOVERNING EQUATIONS 

The considered problem of the femtosecond pulse 
scattering at a microsized particle belongs to the 
problems of diffraction of nonstationary and, generally, 
inhomogeneous optical field at a dielectric sphere. Its 
traditional solution is the use of the spectral Fourier 
method in combination with the linear Mie theory. The 
nonstationary problem of diffraction of a broadband 
radiation is thus reduced to the stationary problem of 
scattering of a set of monochromatic Fourier harmonics 
at a spherical particle. Here, the scattering properties of 
the particle are described by the so-called spectral 
response function ( ; )E rδ ω , which represents the 
traditional Mie series written for all the spectral 
wavelengths of the original pulse [2]. A thorough 
description of the method considered in this paper and 
some of its numerical realizations can be found in [3,4]  
And here we restrict our consideration to listing the 
governing expressions. In our numerical calculations, 
we used the following representation of the electric 
field intensity of the incident linearly polarized 
radiation:  
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where g(t), S(r⊥) are the temporal and spatial pulse 
profiles, respectively; ω0 is the carrier pulse frequency;
E0 is the effective field amplitude; z z^= +r r e ;

x yr x ye e⊥ = + ; , ,x y ze e e  are the unit vectors along the 
x, y, and z axes, respectively; t stands for the time; c is 
the light speed in vacuum. We assumed that a dielectric 
spherical particle with the radius 0a  is placed at the 



point of origin, and the laser pulse diffracting at it 
propagates positively along the z axis. The temporal 
and spatial profiles of the laser beam are set by the 
Gaussian functions: 
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where 0,pt t  stand for the pulse duration and time 
delay; w0 is the spatial beam half-width. 

The first step in solving this problem is translation 
from time coordinates to spectral frequencies using the 
Fourier representation of the original optical pulse 
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where ℑ  is the Fourier transform operator; 
0 0k c= ω .
Equation (3) multiplied by the exponent 

i te ω determines the spectral component in the original 
pulse as the monochromatic wave with the partial 
amplitude 

0 0( ) ( ) ( )yE S G⊥ω = ω−ωA e r .  (4) 

Diffraction of this wave at a spherical particle is 
described within the stationary approximation of the 
Maxwell equations: 
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where ( ; )H rω ω  is the vector of the magnetic field 
intensity; aε  is the complex permittivity of particle 
matter; k c= ω . The boundary conditions on the 

spherical particle surface ( 0r ar= = ) are set by the 
requirement of the cross-surface continuity of the 
tangential components of the internal field Eω , Hω :
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where rn  is the vector of the outward normal with 
respect to the particle surface, and the subscript s refers 
to the scattered wave field. 

Solution of Eq. (4) with account of Eqs. (4) and (6) 
and description of the spatial profile of the light beam 
by the Gaussian function (2) gives the following 
expression for scattering intensity of a short optical 
pulse at a spherical particle:  
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where (3)
nmM , (3)

nmN  is the angular part of the spherical 
harmonics, and the time-dependent expansion 
coefficients 0( ; t)nm aa m a  and 0( ; t)nm ab m a  are 
determined by the following expressions: 
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 Here, (3)
nmM , (3)

nmN  is the radial part of the spherical 
harmonics. 

4. CHARACTERISTICS OF 
NONSTATIONARY ELASTIC SCATTERING 

In the numerical modeling, the complex particle 
refraction coefficient am and the laser radiation 
wavelength 0λ were assumed to be 81.33 10am i −= − ⋅ ;



λ0 = 0.8 μm, which corresponds to, for example, water 
molecules exposed to Ti:Sapphire laser pulses. The 
frequency dispersion of the particle refractive index in 
the chosen wavelength range was neglected, the same 
as neglected were nonlinear optical effects of 
multiphoton ionization and multiphoton absorption. 

The normalized scattering phase function of a water 
droplet in the femtosecond pulse field ( )SI q   is shown 
in Fig. 1. In this figure, we can see four time samples 
of the scattering phase function that correspond to three 
conditional phases of the scattering process, namely, 
the moment of in-particle penetration of ~ 10% of the 
original pulse energy (1), scattering of a half of pulse 
energy (2), and the moment of a complete outgo of the 
pulse from the particle (3).  
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Fig. 1. The scattering phase function of a water droplet 
with 0a = 5 μm irradiated by a 50 fs laser pulse at 

different time moments: / pt t t= = 1 (1); 2 (2); 10 (3),
and 20 (4).

We can see that the shape of the scattering phase 
function is different in each of the three phases. The 
first two phases give the most of a forward scattering, 
which is typical of a usual stationary optical scattering 
at an optically dense particle  (the diffraction of a five-
micron droplet at a 0.8 μm wavelength equals ~ 39). 
Note that the whole first phase (Curve 1) features no 
visible backscattering signal. It appears only at the end 
of the second phase (Curve 2). The third phase (Curves 
3 and 4) has alternating forward and backward 
scattering peaks with a gradual decrease in their 
amplitude, which corresponds to pulsed lightning of 
the particle resonance modes, which have accumulated 
a part of pulse energy. 

5.   SOLUTION OF A TRANSFER EQUATION  

The calculated characteristics of the nonstationary 
elastic scattering can be the basis for statement and 

solution of the problem of femtosecond radiation 
transfer in a finite volume of a liquid-droplet cloud 
medium. Formally, this implies solution of a 
nonstationary transfer equation with a time-dependent 
kernel. This is not a trivial problem. Our first numerical 
estimates [5] were based on the algorithm, where we 
combined the Monte-Carlo and the discrete ordinates 
methods. In the current calculations, the natural basis 
for discretization of the nonstationary transformation of 
the scattering phase function is the above phases of the 
electric field inside a particle. In our presentation, we 
report the statistical Monte-Carlo modeling that 
illustrates the optical field dynamics in a liquid-droplet 
medium exposed to an ultra short laser pulse and 
compare our results to a traditional solution. For the 
problem of laser sensing of clouds, of interest will be 
the expected variations of the time-resolved 
backscattering signal. Fig.2 (a, b) illustrates the 
calculated time dependence (in free photon path units) 
of the backscattering signal intensity ( , )dI h j  with 
respect to the receiving angle of a virtual lidar system. 
Case a reflects the situation when an a femtosecond (tp
= 50 fs) laser pulse is incident on a flat boundary of the 
scattering layer. Compare, case b corresponds to the 
standard stationary Mie scattering. The boundary 
conditions are approached to the real ones. A uniform 
0.2 km thick scattering layer is positioned at a distance 
of 0.2. km. The scattering extinction coefficient 
corresponds to a liquid-droplet cloud with a narrow 
particle size spectrum, = 5 -1; absorption by particles 
is close to zero. The contribution of molecular 
scattering is ignored. 

In the statistical modeling scheme, we use the 
method of local flux estmation. The shape 
transformation of the scattering phase function (Fig.1) 
is simulated by the tabular of inverse functions method 
at each step of the Markovian chain. Formal aspects of 
the Monte-Carlo calculation algorithm are considered 
by Yu. Geints et al. [4]. The main inference we have 
deduced from these results consists in the following: 
the nonstationary resonance scattering induced by an 
ultra short pulse at a spherical droplet, whose size is 
comparable to pulse duration, causes noticeable 
changes in the spatial configuration of the brightness 
field around the laser beam. Due to reduction in 
anisotropy of the resulting phase function there occurs 
a sharp increase in scattering in the location angles, 
which will certainly affect the quantitative interpreting 
of the lidar sensing data. 

 In conclusion, note that according to further 
estimates, in the real cloudiness conditions the 
enhanced lidar backscattering effect will not be so 
much expressed because of the leveling contribution of 
fine water droplet fraction, which falls outside the 
region of optical resonance. Besides, there are quite 
recent results [6] pointing out the possibility to 
considerably increase the imaginary part of the water 



refractive index in the region where the femtosecond 
pulse propagates. We find it wise to take this into 
consideration.
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Fig. 2. Backscattering signal intensity depending on the 
receiving angle. 1 4 1/2 0.5;10;17.5;175d mradj- - =
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