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ABSTRACT 
 
Wavelet denoising was applied to white light lidar sig-
nals using several wavelet functions.  For the strong 550 
nm and 700 nm backscattered signals, all the wavelets 
applied for denoising gave the same high correlation, !, 
with the 800 nm signal.  However, for the weaker 350 
nm and the 450 nm backscattered signals, Daubechies 5 
gave a high %increase in !.  Cloud signals that were 
buried in noise in the weaker channels became notice-
able after the denoising procedure.  The result of the 
study showed that wavelet signal denoising could im-
prove the detectable range of the white light lidar sys-
tem presented in this study.  Daubechies 5 wavelet func-
tion was found to be the most suitable for denoising the 
backscattered white light lidar signals. 
 
1.  INTRODUCTION 
 
Supercontinuum generation on air and other gas media 
using high peak power femtosecond lasers opened the 
way for multispectral atmospheric remote sensing using 
a white light lidar.  Because of its broad spectrum rang-
ing from UV to IR, the technique offers several applica-
tions [1,2].  Just recently we demonstrated that the co-
herent white light continuum can be used for depolariza-
tion measurement in the same way as the conventional 
lidar [3]. The white light continuum was generated in a 
9-m long Kr gas cell before transmitting to the atmos-
phere. The receiving system detects lidar signal at 5 
wavelengths (350, 450, 550, 700, and 800 nm) with 
depolarization measurement at 450 nm.  The complete 
description of the system can be found in [3].  In the 
present system, the detected signals at 350 nm and 450 
nm are sometimes very weak.  Cloud signals that are 
noticeable in 550, 700 and 800 nm lidar signals are 
sometimes hardly noticeable in the 350 and 450 nm 
lidar signals because they are buried in noise.  The 
transmitted intensity of the white light was very weak 
for shorter wavelengths [2,3].  The Lidar system itself 
produced random noise and interference which are usu-
ally smoothen by means of the moving average method 
over the distance but it does not remove the noise.  High 
currents that are switched in the laser circuits during the 
pulse produced a time-dependent background noise 
which are usually difficult  to eliminate by simple 

shielding [4].  Other sources of noise in lidar signals are 
background noises from Sun and Moon. Recently, the 
wavelet transform has become an efficient data analysis 
tool in many fields such as estimation, classification, 
and compression, etc [4].   It has become a powerful 
tool for detecting signals buried in noise and interfer-
ences.  Wavelet denoising is a noise reduction method 
by transforming noisy data into the wavelet domain, 
applying thresholding in the wavelet domain, and in-
verse transforming the denoised wavelet coefficients 
[5].  Fang and Huang made a study on noise reduction 
in lidar signals using discrete wavelet transform [4] and 
wavelet neural network [6]. Wavelet analysis on cloud 
radar and lidar data was used to locate and size charac-
teristic clouds elements [7]. In this paper, wavelet signal 
denoising applied to white light lidar signal is presented.  
Several wavelets were used in this study to find the 
most suitable wavelet for the present white light lidar 
system.  These wavelets were Haar, Daubechies 2 (db2), 
5 (db5), and 8 (db8), Symlets 2 (sym2), 5 (sym5), and 8 
(sym8), and Coiflets 2 (coif2) and 5 (coif5).  A six level 
decomposition was done on all the wavelets except for 
Haar in which an eight level decomposition was used.  
The denoising was done using one dimensional discrete 
wavelet analysis. 
 
 
2. WAVELET TRANSFORM AND DENOISING 
 
2.1  Brief Introduction To Wavelet Transform 
 
In this paper, only some key equations and concepts of 
wavelet transform will be presented.  A more detailed 
discussion on this topic can be found in [4-9].  A wave-
let is a small wave, which has its energy concentrated in 
time, and a tool meant for analysis of transients and 
non-stationary or time varying signals. A continuous-
time wavelet transform (CWT) of a signal x(t) is de-
fined as [9] 
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The analysis function !(t), the so-called mother wave-
let, is scaled by the scaling function, s, so a wavelet 



analysis is often called a time-scale analysis rather than 
a time-frequency analysis.  The asterisk denotes a com-

plex conjugate and this multiplication of s/1 is for 

energy normalization purposes so that the transformed 
signal will have the same energy at every scale.  CWT is 
often redundant and computationally expensive.  The 
discrete wavelet transform (DWT), on the other hand, 
provides sufficient information both for analysis and 
synthesis of the original signal, with a significant reduc-
tion in the computation time. In DWT, a signal is essen-
tially the decomposition of the signal into a number of 
levels. A signal of length 2N can be decomposed into 
N+1 levels. The next step after the decomposition is to 
reconstruct the signal by adding all the levels. For fur-
ther details, please refer to [8,9,10].  
 
The differences between different mother wavelet func-
tions (e.g. Haar, Daubechies, Coiflets, Symlets, and etc.) 
consist in how these scaling signals and the wavelets are 
defined.  The different wavelet functions used in this 
study are shown in Fig.1.  Haar wavelet is discontinu-
ous, and resembles a step function. Daubechies are 
called compactly supported orthonormal wavelets mak-
ing discrete wavelet analysis practicable The names of 

the Daubechies family wavelets are written dbN, where 
N is the order, and db the "surname" of the wavelet. The 
db1 wavelet is the same as Haar wavelet. Coiflet is the 
wavelet function that has 2N moments equal to 0 and 
the scaling function has 2N-1 moments equal to 0. The 
two functions have a support of length 6N-1. The Sym-
lets are nearly symmetrical wavelets proposed by 
Daubechies [11] as modifications to the db family. The 
properties of the two wavelet families are similar. 
 
2.2  Wavelet-based Denoising Procedure 
 
The general wavelet denosing procedure is as follows:  
 
• Apply wavelet transform to the noisy signal to produce 
the noisy wavelet coefficients to the level which we can 
properly distinguish cloud signals that are present in the 
strongest lidar signal (in this case, the 800 nm channel) 
from the weaker lidar signals (350 and the 450 nm 

channels).  In this work different levels were tried and a 
six decomposition-reconstruction level was found to be 
sufficient in all lidar signals. 
• Select appropriate threshold limit at each level and 
threshold method (hard or soft thresholding) to best 
remove the noises. Since the lidar signal tends to domi-
nate low-frequecy components, soft thresholding was 
selected as suggested in [4]. 
• Inverse wavelet transform of the thresholded wavelet 
coefficients to obtain a denoised signal. 
 
2.3 Wavelet Selection 
 
To best distinguish the cloud signals in a noisy lidar 
signal, the “mother wavelet” should be selected care-
fully to better approximate and capture the cloud sig-
nals.  The choice of mother wavelet was based on visual 
inspection of the lidar signals and based on correlation ! 
between the denoised lidar signal at 800 nm and the 
wavelet-denoised signal of the other 4 wavelengths.  
The correlation coefficient is given by 
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Where X and Y are the data being compared, X and 
Y are the mean values, and ) is the standard deviation. 
 
 
3.   THE WHITE LIGHT LIDAR SYSTEM 
 
The setup of the white light lidar sytem is shown in Fig. 
2.  The lidar system is in biaxial configuration. The laser 
transmitter consists of a tabletop terawatt Ti:Sapphire 
laser sytem which operates at 800 nm. It has a frontend, 
which is a combination of a Ti:Sapphire oscillator 
pumped by a laser diode (LD) pumped green Nd:YVO4 
CW-laser and a regenerative amplifier pumped by a LD-
pumped green Nd:YLF laser operated at 1 kHz.  The 
output of the frontend is a 100 fs pulse with an energy 

Fig. 2.  Experimental setup of the white light lidar sys-
tem. 
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Fig. 1.  The different wavelet functions used in 
this study. 



of 0.8 mJ.  The uncompressed frontend pulse is intro-
duced to a multipass Ti:Sapphire amplifier which is 
pumped by two frequency doubled Nd:YAG lasers.  
The final output energy is 100 mJ with a pulsewidth of 
100 fs at a repetition rate of 10 Hz.   To generate the 
white light, output from the Ti:Sapphire laser system is 
focused by a lens with a focal length of 5 m into a 9 m 
long traveling tube filled with Krypton gas at a pressure 
of 1 atm. The generated white light which has a broad 
spectrum from 300 nm to more than 950 nm and a linear 
polarization similar to the original 800 nm pulse [3] is 
collimated by a 10-m radius spherical mirror and trans-
mitted vertically to the atmosphere.  The backscattered 
light is collected by a 30-cm diameter Newtonian tele-
scope. The output light passes along a light guide con-
sisting of a pair of stardiagonal prisms and is then di-
rected to a 6-channel simultaneous measurement sys-
tem.  This configuration preserves the polarization of 
the backscattered light.  A more detailed description of 
the experiment can be found in [3]. 
 
 
4.  RESULTS AND DISCUSSION 
 
The measurement was carried out on March 23, 2005 at 
Suita, Osaka, Japan.  Shown in Fig. 3 is an example of 
the backscattered signals from the 6-channels.  A 500 
shots averaging was used in each channel.  It can be 
seen that lidar signals from 350, 450s, and 450p chan-
nels were very noisy.  Using the one dimensional dis-
crete wavelet analysis graphical interface in Matlab, 
each channel was denoised using Haar, Daubechies 2 
(db2), 5 (db5), and 8 (db8), Symlets 2 (sym2), 5 (sym5), 
and 8 (sym8), and Coiflets 2 (coif2) and 5 (coif5).  A six 
level decomposition was used except for Haar where an 
8 level decomposition was applied.  Automatic soft 
thresholding was applied in all lidar signals as suggested 
in [4].  Cloud peaks can be seen at 0.6 km and at 1 km. 
Fig. 4 shows the original lidar signals and the denoised 
lidar signals from 450-p, 450-s, and 350 nm channels.  
It can be seen from the Fig. 4 that the denoised lidar 
signals showed the cloud peaks especially for the 450-s 

channel. Both the 550 and the 700 nm channel already 
have a high ! with the 800 nm channel even before 
wavelet denoising was applied.   
 
For the other three weaker channels, 350, 450s, and 
450p, an increase in ! was obtained after wavelet de-

noising was applied.  The correlation coefficient in-
crease from 0.25 to 0.7, 0.6 to 0.8, and 0.43 to 0.6 for 
the 450s, 450p, and 350 nm channel, respectively.  The 
350-nm channel showed the lowest ! even after denois-
ing as evident in Fig. 4(c).  Ten other set of lidar sig-
nals, where each set contains 6 lidar signals, were de-
noised and their correlation with the 800 nm channel 
was calculated.  Table 1, gives the average of the %in-
crease in ! for each wavelength using different wavelets.  
The 450s lidar signal after denoising obtained the high-

Fig. 3.  An example of lidar return signal for the 5
wavelengths obtained on March 3/23/2005 at
2:11:17AM JST. 

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 200 400 600 800 1000 1200

Altitude (m)

In
te

n
si

ty
 (

V
o

lts
)

800 nm 550 nm

350 nm 450 p

450 s 700 nm

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

0 200 400 600 800 1000 1200

Altitude (m)

In
te

ns
ity

 (V
ol

ts
)

450 s
haar
db_2_6
db_5_6
db_8_6
sym_2_6
sym_5_6
sym_8_6
coif_2_6
coif_5_6

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

0 200 400 600 800 1000 1200

Altitude (m)

In
te

ns
ity

 (V
ol

ts
)

350 nm
haar
db_2_6
db_5_6
db_8_6
sym_2_6
sym_5_6
sym_8_6
coif_2_6
coif_5_6

Fig. 4.  The original lidar signal from the (a) 450 nm 
p-polarization channel; (b) 450 nm s-polarization 
channel; (c) 350 nm channel and the corresponding 
denoised lidar signals using different wavelets. 
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est %increase in ! of 156%.  From Table 1, db5 is con-
sistently among the top 3 wavelets that give high ! for 
each channel. Visual inspection of each denoised lidar 
signals also indicates that db5 consistenly gives the 
same cloud peaks and shape found in the 800 nm lidar 
signal. 
 
Table 1. The average of the %increase in ! for each 
wavelength using different wavelets. 
 

% increase in correlation Wavelet 450s 450p 350 550 700 
Haar 81.2 20.0 21.7 4.3 0.6 
Daube-
chies 2 152.0 27.2 29.1 6.7 0.9 

Daube-
chies 5 156.4 27.5 35.5 6.4 0.9 

Daube-
chies 8 146.2 26.4 35.0 6.2 0.7 

Symlets 2 152.8 27.0 29.4 6.7 0.9 

Symlets 5 154.4 26.5 34.0 6.0 0.9 

Symlets 8 141.3 28.4 35.8 6.1 0.6 

Coiflets 2 134.8 26.8 36.0 5.8 0.6 

Coiflets 5 141.4 25.2 31.0 5.9 0.9 
 
 
 
5.  SUMMARY AND CONCLUSION 
 
Wavelet denoising was applied to white light lidar sig-
nals using several wavelets.  For strong backscattered 
signals such as the 550 nm, 700 nm, and 800 nm, almost 
all the wavelets applied for denoising gived the same !.  
However, for weaker 350 nm and the 450 nm backscat-
tered signals, db5 gives high %increase in !.  Although 
at 350 nm, ! does not exceed 0.6.  Cloud signals that 
were buried in noise in the weaker channels became 
noticeable after the denoising procedure.  The result of 
the study showed that wavelet signal denoising can im-
prove the detectable range of the white light lidar sys-
tem presented in this study.  Daubechies 5 (db5) wavelet 
function will be used for the denoising procedure before 
extracting relevant information on the backscattered 
signals of the current white light lidar system. 
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