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ABSTRACT

We propose two new possibilities to improve the re-
trieval accuracy of microphysical particle parameters,
in particular, the total number concentration. For
monomodal-lognormal number distributions we suggest
a least squares method (LSM) procedure whereas for ar-
bitrary shaped distributions a maximum entropy method
(MEM) seems to be favourable. Numerical simulation
examples show the improvements. Finally, the modified
methods were tested for measurement cases.

1. INTRODUCTION

Aerosols are one of the key uncertainties influencing the
Earth’s radiation budget and require therefore a detailed
characterization of optical and physical properties to im-
prove the modelling of the planet’s radiation forcing. In
this regard, there is a need to determine microphysical
aerosol particle properties by inversion using optical data.
The inversion problem in a mathematical sense is ill-
posed. Its solution requires the application of appropri-
ate mathematical regularization techniques. The perfor-
mances of some regularization algorithms for lidar re-
mote sensing were discussed by [1], [2], [3] and [4]. The
mathematical ill-posed model which relates the optical
and the physical particle parameters, consists of a Fred-
holm system of two integral equations of the first kind for
the backscatter and extinction coefficients

Γ(λ) =
∫ r1

r0

Kn
π/ext(λ, r; m, s) n(r) dr (1)

where r denotes the particle radius, m is the com-
plex refractive index, assumed wavelength- and size-
independent, s is the shape of the particles, r0 and
r1 represent suitable lower and upper limits, respec-
tively, of realistic particle radii, λ is the measure-
ment wavelength, n is the particle number distribution,
Kn

ext(λ, r; m) = πr2Qext(λ, r; m) is the backscatter and
Kn

π(λ, r; m) = πr2Qπ(λ, r; m) is the extinction number
kernel. Qπ/ext(λ, r; m) are the backscatter and the ex-
tinction efficiency, respectively, for more details see e.g.
[3]. The kernel functions reflect shape, size, and material

composition of the particles. Here homogeneous spher-
ical particles, i.e., Mie scattering theory, are considered,
which gives a reasonable approximation for some kind
of aerosol. Γ in Eq. (1) stands for the backscatter coeffi-
cient β and/or the extinction coefficient α, respectively,
depending on the measurement data. However, one is
mostly interested in the following microphysical parame-
ters like the volume and surface-area concentration, the
effective radius and the total number concentration

at = 3
∫

v(r)
r

dr, vt =
∫

v(r) dr,

reff = 3
vt

at
and nt =

3
4π

∫
v(r)
r3

dr (2)

with

v(r) =
4πr3

3
n(r) . (3)

The parameter nt is, e.g., a very important input value
for local climate models like HIRAM [5]. But, unfortu-
nately, it is the most sensitive parameter in the retrieval.
This was remarked or, therefore, it was omitted in [1] and
[2] or [3] and [4], respectively. In Ref. [2], e.g., for the
worse case 70% error is noted. Furthermore, [1] and [3]
found that the regularized inversion is more stable by us-
ing the volume integral equation, i.e. substituting Eq. (3)
into Eq. (1). Since the retrieval ṽ(r) for the volume dis-
tribution v(r) is only an estimation with some noise level
a great amplification of this noise level occurs in deter-
mining nt by Eq. (2), i.e., in dividing by r3 for r → 0. In
the following we write v(r) instead of ṽ(r) for simplicity.
The paper focuses on the improvement of the retrieval of
nt. Two different methods will be considered.

2. METHODOLOGIES

We propose two algorithms for improving the determina-
tion of the total number concentration n t. The first step
in both algorithms consists in using the regularized inver-
sion to determine an estimation of the volume distribution
v(r), see [3] and [4] for two different regularization pos-
sibilities. The second step consists in the improved deter-
mination of the microphysical particle parameters with-
out using directly the Eq. (2).



2.1. Least Squares Method

In case that one discovers in the first retrieval step that the
estimated distributions n(r) and v(r), respectively, look
similar to a monomodal-lognormal distribution, i.e.

nM(r; nt, rmed, σ) =
nt√

2πlnσ

1
r

exp

{
− ln2 r

rmed

2 ln2σ

}

and

vM(r; nt, rmed, σ) =
2
√

2π

3
nt

lnσ
r2 exp

{
− ln2 r

rmed

2 ln2σ

}
,

it is possible to continue in the second step with a nonlin-
ear least squares fitting to a monomodal-lognormal dis-
tribution. We know the estimation of v(r) at m different
tuples (rj ; vj), i = 1, .., m. We are interested in estimat-
ing the three parameters x = (nt, rmed, σ). Therefore,
on has to minimize the functional

Φ(x) = ‖v(.) − vM (., x)‖2 =

√√√√ m∑
j=1

|vj − vM (rj , x)|2

by using, e.g., the modified Gauss-Newton method for
separable least squares problems, see [6]. Firstly, one
splits off the linear parameter nt, i.e., vM(r, x) = nt ·
v̂M(r, y), y = (rmed, σ). It holds

nt(y) =

m∑
j=1

v̂M(rj , y) vj

m∑
j=1

v̂2
M(rj , y)

and, therefore, it is enough to minimize Φ̂(y) = ‖v −
nt(y) · v̂M(., y)‖2 by using a suitable initial value y0 =
(rmed0 , σ0). It is favourable to determine the initial value
by using the data points (rj ; vj), i = 1, .., m. It holds

lnσ =
1√
2

√
− (lnr − lnrmax)2

lnvM(r) − lnvM(rmax)
for σ > 1.

where vM(rmax) is the maximum value of the function
vM. In using themaximumvalue of vj , i.e. vjmax , jmax ∈
{1, ..., m}, we receive for each data tuple (ri, vi), i =
1, ..., m, i �= jmax an estimation for lnσi. Moreover,
the mean value lnσ0 = (

∑m
i=1 lnσi)/(m − 1) with

i �= jmax gives a suitable initial value σ0. Further-
more, one gets a good initial value for rmed with rmed0 =
rjmax · exp(−2 ln2σ0). Finally, the fitting parameters are
rFit
med, σFit and nFit

t = nt(rFit
med, σ

Fit) and one gets the
improved microphysical particle parameters by

reff = rFit
med · exp

{
5
2

ln2σFit

}
, nt = nFit

t (4)

at = 4π nFit
t (rFit

med)2 · exp
{
2 ln2σFit

}
and

vt =
4π

3
nFit

t (rFit
med)3 · exp

{
9
2

ln2σFit

}
,

see [7]. Since the retrievals for reff , at and vt show al-
ready good accuracies in the first step, see [3], we only
expect an improvement for nt.

2.2. Maximum Entropy Method

In case that we do not discover a monomodal log-normal
distribution in the first step, i.e. we find an arbitrary dis-
tribution possibly with more than one mode, we suggest
an improvement by using a particular MEM. Firstly, we
regard the integral equation (1) with the number distribu-
tion n(r) = n0(r) as usual and, additionally, with the so
called moment distribution ng(r) = rg · n(r), g > 0,

Γ(λ) =
∫ r1

r0

π

rg−2
Qπ/ext(λ, r; m) ng(r) dr, (5)

g = 0, 1, 2, ..,, similar to [2]. Discretization of the inte-
gral equation (5) via collocation, see [3], yields for each
g ∈ N in a linear equation system

T g
π/extNg = Γ + ε (6)

with vectors Ng = (ng,1, ..., ng,p) and Γ = (Γ1, ...,Γp)
as well as a matrix T g

π/ext with elements T g
j,i :=

{T g
π/ext}j,i. The estimation for the moment distribu-

tion is a linear combination ng(r) =
∑p

i=1 ng,i ϕi(r)
where ϕi are p B-spline functions of order 4 (piece-
wise cubic polynomials) with equidistant nodes. In using
this moment distributions we can estimate the moments
Mk =

∫
nk(r)dr of n(r) and it holds nt = M0, at =

4π M2, vt = 4π
3 M3 and reff = M3

M2
. We assume that

the kth moment of n(r) =
∑p

i=1 n0,iϕi(r) is known and
we get

Mk =

∫
rk n(r)dr =

p∑
i=1

n0,i

∫
rkϕi(r)dr =

p∑
i=1

n0,is
k
i

with sk
i =

∫
rkϕi(r)dr. Let ϕν

i normalized with re-
spect to sν

i , ν ∈ N , i.e. ϕν
i = ϕi/sν

i and we are
looking for n(r) with respect to this basis, i.e. n(r) =∑p

i=1 nν
0,iϕ

ν
i (r). Then k = ν yieldsMk =

∑p
i=1 nk

0,i.

Secondly, we introduce the entropy functional. With its
ultimate roots in 19th century statistical mechanics and
a subsequent strong justification based upon probabil-
ity theory, the MEM has provided an extremely success-
ful variational principle to address this type of inversion
problems. The starting point of our approach is to use
a discretized form of the Shannon entropy functional Ω,
see e.g. [8],

Ω(Nk
0 ) =

p∑
i=1

nk
0,iln(nk

0,i) (7)

which one has to minimize under the two constraints that,
firstly, Eq. (6) holds for g = 0 with respect to the ba-
sis {ϕk

i } and, secondly, Mk =
∑p

i=1 nk
0,i. This is an

ordinary mathematical optimization problem with equal-
ity constraints only, since nk

0,i > 0 holds automatically
because of the functional definition in (7). Those con-
strained problems can be reduced to an unconstrained
convex optimization problem via the Lagrangian multi-
plier method, see e.g. [9]. We use the common La-
grangian functional with Lagrangian multiplies λ j ,

L(n, λ) = Ω(Nk
0 ) + λ̄0

(
p∑

i=1

nk
0,i − Mk

)
+



+
m∑

t=1

λt

(
n∑

i=1

T 0
t,in

k
0,i − Γt

)

which one has to minimize. For the partial derivatives
hold

∂

∂nk
0,i

L(n, λ) = ln(nk
0,i) + λ0 +

m∑
t=1

λtT
0
t,i

with λ0 = 1 + λ̄0. The necessary condition yields

nk
0,i = exp

⎧⎨
⎩−

m∑
j=1

λjT
0
j,i

⎫⎬
⎭ / exp(λ0).

and withMk =
∑p

i=1 nk
0,i one obtains

exp(λ0) =
1

Mk

p∑
z=1

exp

{
−

m∑
t=1

λtT
0
t,z

}

and, moreover,

nk
0,i =

Mk exp
{−∑m

t=1 λtT
0
t,i

}
∑p

z=1 exp
{−∑m

t=1 λtT 0
t,z

} . (8)

Substituting Eq. (8) into the Eq. (6) one gets

0 =
p∑

i=1

T 0
j,in

k
0,i − Γj =

p∑
i=1

(
T 0

j,i − Γj/Mk

)
nk

0,i

=
p∑

i=1

(
MkT 0

j,i − Γj

)
exp

{
−

m∑
t=1

λtT
0
t,i

}
(9)

for j = 1, ..., m. This nonlinear equation system can be
solved again with the algorithm proposed in [6] to get the
multipliers λt. This method is able to find a solution by
using an arbitrary known momentMk.
Finally, we adapt the proposed method to determine mi-
crophysical parameters by using the third momentM 3 =
3/(4π)vt of the distribution n(r) since the estimation of
vt is the most stable one, see [3]. Therefore, by us-
ing M3, i.e. k = 3, and the normalized B-spline func-
tions ϕ1

i , i.e. ν = 1, we are looking for an estimation
of n2(r) contained in the space span{ϕ1

1, ..., ϕ
1
p}, i.e.

n2(r) =
∑p

i=1 n1
2,iϕ

1
i (r) with

M3 =

∞∫
0

r · n2(r) dr =

p∑
i=1

n1
2,i

∞∫
0

r · ϕ1
i (r) dr =

p∑
i=1

n1
2,i.

Next, we modify the Eq. (8) to

n1
2,i =

M3 exp
{−∑m

t=1 λtT
2
t,i

}
∑p

z=1 exp
{−∑m

t=1 λtT 2
t,z

}
and in the same way the nonlinear Eq. (9) to compute the
particular λt. Then we can determineM2 =

∫
n2(r) dr.

Repeating this procedure forM1 and M0 = nt we get a
better estimation for nt than by using directly Eq. (2).
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Figure 1. Comparison of the retrieval results for the effec-
tive radius. The uncertainty bars correspond to the stan-
dard deviation (left). The retrieved volume distributions
for the measurement cases by using regularized inversion.
The additional fit is not shown ( right).

Table 1. Comparison of the retrieval results for the total
number concentration nt

Input Noise Mean relative error of nt (%)
(%) by a fit see Eq. (4) by using Eq. (2)
0.00 16 ± 009 20600± 38500
0.10 19 ± 010 20000± 37700
1.00 52 ± 108 18700± 36900
5.00 58 ± 031 15300± 27500

3. NUMERICAL TESTS AND APPLICATIONS

3.1. Simulation Results

Firstly, a simulation test for LSM was done with
monomodal-lognormal number distributions, known re-
fractive index, 6 backscatter coefficients (at 355 nm,
400 nm, 532 nm, 710 nm, 800 nm und 1064 nm) and
2 extinction coefficients (at 355 nm and 532 nm) with
the following values σ = 1.4, 1.8, 1.3 and rmed =
0.1, 0.1, 0.3 μm as well as nt = 1, 1, 1 cm−3.
For the refractive index m we used for the real part
Re(m) = 1.4, 1.5, 1.7 and for the imaginary part
Im(m) = 0, 0.005, 0.01. In sum 27 simulation ex-
amples were investigated. In simulating the noise levels
Gaussian noise was used, i.e. each coefficient was dis-
turbed with e.g. 5% normal distributed noise. To increase
the statistical significance for each noise level 100 rep-
resentants were produced. As regularization technique
the hybrid Padé method of [10] with discrepancy princi-
ple as parameter choice rule was used. From those re-
trieved volume distributions the parameters reff and nt

were computed by Eq. (2). Subsequently, LSM was used
to determine reff and nt. The results are shown in Fig. 1
(left) and Table 1. As expected the fitting procedure does
not improve the error of the effective radius so much.
Both retrievals are more or less in the same order of mag-
nitude, see Fig. 1. But there is a huge improvement for
the total number concentration, see Table 1.
Secondly, one first simulation test for a sun photometer
case with noiseless input data was made for MEM in us-
ing a monomodal-lognormalnumber distribution with the
following parameter values σ = 1.6, rmed = 0.1 μm and
nt = 123 cm−3, a known refractive index m = 1.5 +
0.01i as well as 100 extinction coefficients (wavelengths



equidistant distributed between 355 nm and 1064 nm).
That is justified here since a sun photometer has several
channels, e.g. 17 at AWI station, which are sufficient to
make a good cubic spline interpolation to get 100 data
points. Thereby, the third moment vt was determined
with an accuracy of 4% in using the Padé method [10]
for the first step. Again, whereas the parameters reff and
at maintained their accuracies in the second step by using
MEM a huge improvement for the total number concen-
tration occurs, i.e. the retrieved value is nt = 156 cm−3

with an error of only 27.2% having in mind that LSM
used additionally a-priori information about the distrib-
ution shape. Further extensive investigations have to be
made for MEM. This is still an ongoing work.

3.2. Measurement Results

The first data set presented here was recorded on
02.03.2002 with a Raman lidar (3 backscatter wave-
lengths at 355 nm, 532 nm and 1064 nm as well as 2
extinction wavelengths at 355 nm and 532 nm), operat-
ing at the Koldewey station, Spitsbergen at 78.9◦ North
and 11.9◦ East during an arctic haze event. Lidar profiles
were averaged over 60 m and 2 hours time (during 1UT
to 3UT) in very stable meteorological conditions. The
retrieval of backscatter and extinction coefficients was
done according to the classic Raman lidar evaluation pro-
posed by [11]. At an altitude of 1555 m increased values
of extinction and backscatter were found, accompanied
by considerable low values of the volume depolarization,
which indicates almost spherical particles.
From these lidar data a mean refractive index of (1.69 ±
0.04) + (0.026 ± 0.005)i could be estimated. For, e.g.,
1.65+0.035i the solution appears after regularized inver-
sion as a monomodal and lognormal-like distribution,
see Fig. 1 (right), hence, we used a monomodal lognor-
mal distribution for LSM. With this method we estimated
nFit

t = 89 per cm3 and an effective radius of 0.23 μm.
This effective radius and a monomodal particle number
distribution matches to aged aerosol as well. So our data
evaluation scheme is able to reproduce the characteristics
of arctic haze. The air probed on this day came from
Northern Romania, Ukraine and Russia in the 8 days
before its arrival in Spitsbergen as was confirmed with
NOAA hysplit trajectories [12]. Hence, anthropogenic
pollutants can be expected and the index of refraction is
in agreement with a mixture of sulphates and soot, which
have been found as main constituencies of arctic haze by
particle counters during prior campaigns at the site.
The data for the second example comes from 14.02.2006
at 1775 m. It was recorded at the same site with the same
lidar as before between 11:30 and 12:45 UT. Data again
was averaged over 60 m and the whole time period. In
this case an anthropogenic influence of the air masses is
not so obvious from NOAA hysplit. However, the air
which arrived in Spitsbergen at 1775 m passed over the
coastline of Alaska and then Siberia at low heights some
days before, where it may have taken up some aerosol. In
accordance with a less pronounced anthropogenic impact
in this data set we found a lower index of mean refraction
of (1.61 ± 0.041) + (0.006 ± 0.0046)i, which is nev-
ertheless still higher than pure sulphate particles alone.

Again volume depolarization was low, so that Mie the-
ory of scattering could be applied. For, e.g., 1.59+0.015i
as expected for arctic aerosol a monomodal volume dis-
tribution was obtained for this case as well. Therefore
again the LSM was used for the retrieval of the micro-
physical properties. Here more but smaller particles were
found: nFit

t = 285 per cm3 and reff = 0.20 μm. The
smaller diameter of the aerosol in this second example
can probably be explained by its longer residence time in
the atmosphere (around 10 days, compared to 6 days in
our first case).
For both data sets even an estimation of the single scatter-
ing albedo, which is a very important quantity in climato-
logical models, can be given. A value of 0.834 and 0.927,
respectively, was found for 532 nm. So the retrieval of
the microphysical parameters of arctic aerosol by inver-
sion of lidar data is possible. This tool will greatly help
to monitor and understand climatological processes even
at remote and sensitive sites as the arctic ecosystem.
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