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ABSTRACT 
 
Signal averaging is a standard means of improving the 
signal to noise ratio during lidar signal acquisition. The 
underpinning assumption in such an operation is that the 
system under observation is stationary and ergodic, i.e. 
the statistics of the system under observation 1) do not 
change within the observation period and 2) the 
temporal average is a good indicator of the ensemble 
average. 
 
Interpretation of data averaged under highly dynamic 
atmospheric conditions may thus prove to be 
problematic unless individual waveforms are accessible 
for reference and interpretation –the preferred situation. 
However, some level of local data processing and 
reduction may be considered for remotely operating or 
autonomous systems, such as for bandwidth restricted 
space missions, even though averaged data in such 
cases can be very misleading. 
 
We discuss an approach in which the geometric mean 
and error, together with arithmetic mean and error, can 
be used to establish the validity of averages without 
recourse to the individual waveform data from which 
these values are reduced. 
 
1. INTRODUCTION 
 
In some lidar operational circumstances, particularly 
space missions, data flow can be constrained by the 
bandwidth of the communication link. One potential 
solution to this problem is on-board data accumulation –
i.e. the addition of multiple waveforms per integration 
interval– and processing. The potential advantage 
offered by signal on-board signal averaging –i.e. 
reduction of data volume with an improved signal to 
noise ratio– is lost as the system under investigation 
departs from stationary ergodicity, as shown in Fig. 1. 
 
The curves represent continuous, infinitely-resolved 
signal distributions at a given range in their large 
sample limit. The signal strength, notionally in volts, is 
varies along the abscissa. The sample frequency is 
plotted against the ordinate. The top curve represents a 
signal distribution in which the scattering system is 

stationary and ergodic i.e. 1) the statistics of the system 
under observation do not change within the observation 
period and 2) the temporal average is a good indicator 
of the ensemble average. The arithmetic average, 
represented by the vertical line, is coincident with the 
signal distribution mode. In the middle panel, two 
scattering populations, similar but not quite identical, 
are present. The modes of the individual distribution are 
depicted by solid vertical lines and the respective 
distributions by the solid curves. The average is 
represented by the dotted vertical line and the dotted 
curve represents the signal distribution as inferred from 
the standard deviation calculated from the bimodal 
distribution data. The average is roughly representative 
of the system state, but with some loss of information. 
The bottom panel depicts a situation in which two 
distinct scattering populations are present during the 
averaging period, such as cloud returns under partially 
cloudy conditions. The signal distribution inferred from 
a simple average completely misrepresents the reality of 
the scattering conditions.  
 

 
Fig. 1: Averages and Inferred Distributions for Bimodal 

Distributions 
 
 
In such widely varying circumstance, a large error 
interval is to be expected, also as seen in the lower 
panel of Fig. 1. However, the size of the error interval 
alone is not a reliable indicator of non-stationary 
conditions as it does not distinguish between 
multimodal distributions and broad, unimodal scattering 
distributions. Similarly, closely situated scattering 
distributions would go undetected within the 
distribution inferred from the average and standard 
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deviation, as seen in the middle panel of Fig. 1, without 
even the size of the error interval to indicate that the 
conditions may be non-stationary/ergodic.  
 
Ambiguous interpretation of such processed data 
originates in the equal weight ascribed to all 
contributing data. Logarithmically collected data, as 
implemented with logarithmic amplifiers (logamps) are 
inherently skewed towards the lower values in the 
distribution [1]. This feature may be usefully employed 
to distinguish between unimodal and multimodal signal 
distributions, as might occur when signals are averaged 
over a time period in which scatterers, such as clouds, 
are in and out of the receiver field of view during the 
integration period 
 
Accumulated logarithmic signals are reduced as the so-
called geometric mean. The geometric mean is 
insensitive to the presence of large-valued outliers and 
is always less than or equal to the arithmetic mean [2]. 
The more tightly clustered the data distribution, the 
smaller the difference between the geometric and 
arithmetic means. The geometric mean is the inversion 
of the raw digitized logamp signal by means of the 
antilog operation, described in Eq. 1: 
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where

rawx is the arithmetic average of the raw logamp 
signal, ijx is the ith logarithmic signal collected at the jth 
range interval, and N and M are the number of temporal 
and spatial samples, respectively. 
 
The geometric standard deviation of the geometric 
mean is defined in Eq. 2: The error limits of the 
logarithmic signal inversion are defined in Eq. 3:  
 
Unlike the arithmetic standard deviation, the geometric 
standard deviation is a factor applied to the geometric 
mean in order to determine the upper and lower error 
limits. 
 

! "! "
! " ! "

raw

MN
MN

x
x

M

j

N

i
ijM

j

N

i
ij

g

,

,

10

11

log
log

loganti

2

1 1

1 1

2

#

-%-
%

&
&
'

(
)
)
*

+
&&
'

(
))
*

+

-
.

//
00 # #

# #

        (2) 

 

 
! " ! " ! "! " ! "
! " ! " ! "! "

&
&
'

(
)
)
*

+
###

%###

--

11

g

gxx
g

gg
xx

g

x
x

xx

ggaa
l

ggaa
u

,

,

,,

,,

loglog

loglog ;

1010

1010
 (3) 

 
The bias between signal data retrieved linearly and with 
logarithmic compression is expressed in Eq. 4 simply 
as: 
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where ax is the arithmetic average of linearly 
accumulated data. The geometric mean is always less 
than or equal to the arithmetic mean, i.e. the minimum 
value of (4) is zero. The maximum value is one.  
 
When the signal distribution becomes multimodal, two 
things are thus expected to happen 1) a bias arises 
between data reduced through the geometric mean and 
those reduced through the arithmetic mean. This is a 
corollary of the arithmetic- geometric mean inequality; 
2) the inversion of the geometric mean results in an 
increasingly skewed signal distribution. 
 
These attributes are investigated for their usefulness in 
establishing stationary ergodic conditions and the 
validity of averaged data. 
  
2. DISCUSSION 
 
Fig. 2 depicts signals accumulated from a small 
breadboard lidar system built by Optech Incorporated. 
The lidar is zenith sounding. The data shown were 
collected using 1064 nm output with 300 2J per pulse at 
100Hz. The signal returns displayed in Fig. 2 are 
averages over 348 shots at an altitude of about 1.58–1.7 
km, collected in Toronto on April 5, 2005 under mostly 
cloudy conditions. The return signals were sampled at 
2.5 m intervals. 
 
The heavy dashed black curve depicts the arithmetic 
and geometric mean signal strengths as a function of 
range. They are not identical, but on the scale of the 
chart are indistinguishable. The bias between them is 
depicted by the heavy black line, with a negative 
deflection. These two curves are described by the left-
hand y-axis The arithmetic relative error is depicted by 
the solid black line. The arithmetic relative error with 
DC offset eliminating the residual error is depicted by 
the thin dashed black line.  
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Fig. 2: Arithmetic/Geometric Mean, Bias and Relative 
Errors per Range; Heavy Dashed Black Line –
Arithmetic/Geometric Mean, Heavy Solid Black Line – 
Arithmetic/Geometric Mean Bias, Thin Solid Black 
Line – Relative Error without DC Zero Offset, Thin 
Dashed Black Line – Relative Error with DC Zero 
Offset 
 
Both the arithmetic and geometric mean value signal 
strengths rise from initial values at 1.580 km altitude 
increase to a peak value at an altitude of 1.610 km and 
then tapering off until 1.691 km. There is a very close 
overlap between the geometric and arithmetic mean 
signal whenever the signal strength reaches a peak or 
relative plateau. The arithmetic-geometric mean bias is 
greatest in those ranges where the signal strength is 
changing most rapidly and least in those ranges where 
the signal strength reaches an extremal value or plateau. 
Three features of particular interest in this respect and 
are range-labeled 1) the onset of the signal return at 
1.580 km, 2) the maximum magnitude of bias between 
the geometric and arithmetic means at 1.589 km and 3) 
the region of least bias between the arithmetic and 
geometric means at 1.610 km. The raw data from which 
these features are developed are instructive.  
 
Fig. 3 depicts a histogram of signal strength values 
returned clouds from an altitude of 1.580 km. The solid 
black histogram depicts data obtained with a 
logarithmic amplifier and subsequently digitized. The 
dashed curve represents the inversion of the logamp 
histogram, i.e. each logarithmic signal return is inverted 
individually and digitized according to the linearly-
defined voltage levels, replicating linear capture of the 
signal.  
 
There is a qualitative difference between the two 
histograms. The raw logamp signal return is multimodal 
and is distributed predominantly about a peak at 200 
mV, but with many excursions towards larger signal 
strength values, some of which are more than 500 mV. 
Noise in the lower bits largely accounts for skewing of 
the distribution to the right [3]. Small signals embedded 
in this regime can be retrieved through averaging. 
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Fig. 3: Raw Logamp Signal Histogram and Inverted 
Signal Distribution, Clouds at 1.58 km Altitude 
 
The inverted logamp signal, however, is a simple 
unimodal distribution. Large signal contributions (~ 500 
mV), seen in the raw signal histogram, are lost in the 
inversion process. Linearly accumulated data have 
coarser resolution in the small signal regime than data 
accumulated logarithmically. Linearly accumulated data 
thus closely resemble the inverted logamp results. 
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Fig. 4: Raw Logamp Signal Histogram and Inverted 
Signal Distribution, Clouds at 1.589 km Altitude 
 
Fig. 4 depicts a histogram of the raw logamp data 
retrieved from an altitude of 1.589 km, the range where 
the bias deflection is greatest. The data distribution in 
Fig. 4 is multimodal, with at least two local peaks in the 
raw logamp data. The multimodal structure is also 
evident in the inverted logamp signal, but the large 
positive logamp values are de-emphasized in the 
inversion. The large-valued inverted signal distribution 
is spread out while the low signal distribution appears to 
be largely lumped into the smallest voltage levels. 
These results are consistent with the situation described 
in the lower panel of Fig. 1. The situation is non-
stationary ergodic and the temporal average contains no 
further information about the ensemble. 



 
Fig. 5 shows the data distribution corresponding to the 
peak values of the average profiles, where the bias is 
small. The distribution of the raw logamp signal is 
tightly distributed upon a central limit. The inverted 
logamp signal distribution reverts to a symmetric, 
centrally-limited envelope with good fidelity. Of the 
three distributions presented so far, the data distribution 
shown in Fig. 5 represents the most appropriate 
candidate data set for averaging.  
 
Review of similar data from the data set shows that the 
magnitude of the bias between the arithmetic and 
geometric means is associated with the multimodal 
signal distributions, which indicate non-stationary/non-
ergodic conditions in the scattering medium. Thus low 
bias regions appear to be the most appropriate for signal 
averaging.  
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Fig. 5: Raw Logamp Signal Histogram and Inverted 
Signal Distribution, Clouds at 1.61 km Altitude 
 
Logarithmically reduced data may be used to correctly 
identify valid averaging conditions without the presence 
of a linear amplifier circuit. Local extremal points from 
the plot of the geometric mean presented in Fig. 2 were 
assessed for their bias as well as the relative geometric 
error, defined as the difference between the upper and 
lower geometric error limits divided by the geometric 
mean. The results are plotted in Fig. 6. 
 
The black diamonds are from low bias data at ranges of 
1.610, 1.640 and 1.691 km. The black dots are from 
high bias data at ranges of 1.580, 1.589, 1.628 and 
1.673 km. The horizontal dotted line indicates the limit 
of bias attributable to discretization of the logarithmic 
signal (<3%) [4]. The correlation between the bias and 
the relative error is depicted by the solid and dashed 
lines, accounting for the entire set of data and that for 
which the two outlying points are omitted from the 
calculation. There is strong correlation between the bias 
and the geometric relative error: the geometric relative 
error is a potential indicator of stationary-ergodic 
conditions. 
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Fig. 6: Arithmetic-Geometric Mean Bias versus 
Geometric Relative Error. Diamonds-Low Bias Data, 
Circles-High Bias Data, Solid Black Line-Trend (All 
Data), Dashed Black Line- Trend (No Outliers), Gray 
Line- 3% Bias Cut-Off 
 
3. CONCLUSIONS 
 
Small bias values between the arithmetic mean –
corresponding to data collected with a linear amplifier– 
and geometric mean –corresponding to data collected 
with a logarithmic indicate amplifier– indicate 
approximately stable conditions and signal averages are 
valid.  
 
Large biases between the arithmetic and geometric 
mean occur when the scattering medium is unstable and 
where averaged signal data are not interpretable 
 
The bias is correlated to the geometric mean relative 
error, i.e. the ratio of the geometric mean error interval 
to the mean signal value. The relative error as 
determined through the use of the geometric standard 
deviation and mean is a good predictor of bias and tends 
to eliminate or reduce the effect of data outliers. The 
relative error as determined by the arithmetic standard 
deviation and mean is not a good predictor of bias and 
data outliers can greatly affect results. 
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