
Reviewed and Revised Papers Presented at the

23rd International Laser Radar Conference

24-28 July 2006

Nara, Japan

Editors: Chikao Nagasawa, Nobuo Sugimoto

Preface

The International Laser Radar Conference (ILRC) is traditionally the Conference where scientists and engineers from all over the world working in the field of laser radar (or lidar) applied to the atmosphere, earth, and oceans meet together over the years. This Conference is held biennially under the auspices of the International Coordination-group for Laser Atmospheric Studies (ICLAS), of the International Radiation Commission, International Association of Meteorology and Atmospheric Physics.

The 23rd International Laser Radar Conference (ILRC23) was held in Nara City, Japan on July 24th - 28th, 2006. Nara is located in the central part of the main island of Japan. It was the first permanent capital of Japan in the 8th century, and the cradle of Japanese culture, arts and crafts. Several temples and shrines in Nara are listed as World Heritage sites by UNESCO. The ILRC has been held at Sendai in Japan, in 1974 and 1994, and this is third time in Japan.

The papers collected in this book were reviewed by at least one member of the Program Committee and time was allotted for minor revisions by the authors. It contains no parallel session other than poster sessions, which are held separately from the oral sessions. A lot of papers are submitted for the ILRC23. This allows for approximately 82 oral and 215 poster presentations which contain 16 post deadline papers. Total number of submitted papers may be maximum in ILRC history. As many papers are presented in poster sessions, to miss the poster sessions is to miss most of the content of the ILRC23.

As will be seen in the many excellent papers contained in this volume, remote lidar technology, lidar network and its space application are in a period of providing fresh and detailed features of our earth. The lidar technology will be expected still harder for contribution to the advancement of atmospheric science and the improvement of human life.

The editors would like to thank all the Conference Committees for their enthusiastic, careful and punctual work. The success of this conference would not have been possible without the excellent dedication of the session chairs and many authors of the high quality papers contained herein.

Chikao Nagasawa and Nobuo Sugimoto

Editors

COMMITTEES

Steering Committee

- Chikao Nagasawa, Tokyo Metropolitan University, Japan (Conference chairperson)
- · Nobuo Sugimoto, National Institute for Environmental Studies, Japan
- Toshiyuki Murayama, Tokyo University of Marine Science and Technology, Japan
- Kohei Mizutani, National Institute of Information and Communications Technology, Japan
- · Yasunori Saito, Shinshu University, Japan
- · Hiroaki Kuze, Chiba University, Japan
- · Takashi Shibata, Nagoya University, Japan
- · Takuji Nakamura, Kyoto University, Japan
- · Takashi Fujii, Central Research Institute of Electric Power Industry, Japan
- · Makoto Abo, Tokyo Metropolitan University, Japan
- · Tatsuo Shiina, Chiba University, Japan

Program Committee

- •Nobuo Sugimoto *, National Institute for Environmental Studies, Japan (Chairperson)
- · Albert Ansmann, Institute for Tropospheric Research, Germany
- **Arnoud Apituley** *, RIVM National Institute of Public Health and the Environment, The Netherlands
- Yuri Arshinov *, Institute for Atmospheric Optics, Russia
- Andreas Behrendt, Institut fuer Physik und Meteorologie (IPM) Universitaet Hohenheim, Germany
- Luc R. Bissonnette *, Defence R&D, Canada
- · Jens Boesenberg *, Max-Planck-Institut für Meteorologie, Germany
- Edward V. Browell, NASA Langley Research Center, USA
- Anatoli Chaikovsky, Institute of Physics, National Academy of Sciences of Belarus
- · Andrew Cheng, City University of Hong Kong, China
- Adolfo Comeron *, Adolfo Comeron, Universitat Politecnica de Catalunya, Spain

- · Gerhard Ehret *, Institut für Physik der Atmosphäre DLR, Germany
- Edwin W. Eloranta, University of Wisconsin at Madison, USA
- · Pierre H. Flamant *, Ecole Polytechnique, France
- · Bruce M. Gentry, NASA Goddard Space Flight Center, USA
- A. Hauchecorne, Service d'Aeronomie CNRS-UMR, France
- · Yoshihito Hirano, Mitsubishi Electric Corp., Japan
- · Raymond M. Hoff, University of Maryland Baltimore County, USA
- · Takuya Kawahara, Shinshu University, Japan
- Philippe Keckhut, Service d'Aeronomie Institut Pierre Simon Laplace (IPSL), France
- · Young J. Kim, Gwangju Institute of Science and Technology (GIST), Korea
- · Takao Kobayashi, Fukui University, Japan
- · Hiroaki Kuze, CEReS, Chiba University, Japan
- · Choo Hie Lee, Lider Center, Kyung Hee University, Korea
- · Zhishen Liu, Ocean University of Qingdao, China
- Patrick McCormick *, Hampton University, USA
- Robert T. Menzies *, NASA Jet Propulsion Laboratory, USA (President of ICLAS)
- · Kohei Mizutani, NICT. Japan
- Toshiyuki Murayama, Tokyo University of Marine Science and Technology, Japan
- Tomohiro Nagai, Meteorological Research Institute, Japan
- Chikao Nagasawa *, Tokyo Metropolitan University, Japan
- Takuji Nakamura, Kyoto University, Japan
- · J. B. Nee, National Central University, Taiwan
- P. B. Rao, National Atmospheric Research Laboratory, India
- Gelsomina Pappalardo *, Istituto di Metodologie per l'Analisi Ambientale-CNR, Italy
- · Alexandros Papayannis, Ethnikon Metsovion Polytechnion Athinon, Greece
- Jacques Pelon, CNRS Service d'Ae'ronomie, Universite' Pierre et Marie Curie, France
- · C. Russell Philbrick, Pennsylvania State University, USA
- Kenneth Sassen *, University of Alaska, USA
- · Chiao-Yao She, Colorado State University, USA
- · Takashi Shibata, Nagoya University, Japan
- Upendra Singh *, NASA Langley Research Center, USA
- Thomas Trickl, Institute of Atmospheric Environmental Research, Germany

- · Geraint Vaughan, Physics Department, University of Wales, United Kingdom
- · David N. Whiteman, NASA Goddard Space Flight Center, USA
- · Jean-Pierre Wolf *, Universite Claude Bernard Lyon 1, France
- Stuart Young *, CSIRO Atmospheric Research, Australia
- Jun Zhou *, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, China
- *Members of the International Coordination-group for Laser Atmospheric Studies (ICLAS)

Organizing Committee

· Takao Kobayashi, University of Fukui, Japan (Chairperson)

Travel Grant Committee

- · Takao Kobayashi, University of Fukui (Chairperson)
- · Robert T. Menzies, NASA Jet Propulsion Laboratory, USA (President of ICLAS)
- · Upendra Singh, NASA Langley Research Center, USA
- Thomas.J.McGee, NASA Goddard Space Flight Center, USA
- · Geary Schwemmer, NASA Goddard Space Flight Center, USA
- Gelsomina Pappalardo, Istituto di Metodologie per l'Analisi Ambientale CNR, Italy
- · Chikao Nagasawa, Tokyo Metropolitan University, Japan
- · Nobuo Sugimoto, National Institute for Environmental Studies, Japan

The Twenty Third International Laser Radar Conference Sponsors

International Coordination-group for Laser Atmospheric Studies (ICLAS)

National Aeronautics and Space Administration

National Institute of Information and Communications Technology

Japan Aerospace Exploration Agency

Research Institute for Sustainable Humanosphere, Kyoto University

Constitution and Bylaws

29 January 2004

CONSTITUTION

Article I. Name

This Society shall be called the International Coordination-Group on Laser Atmospheric Studies (ICLAS). The ICLAS is a nonprofit, constituent Working Group of the International Radiation Commission (IRC).

Article II. Objectives

- 1. The Society shall work to promote the study of the environmental and geological sciences, climate, meteorology, pollution, and atmospheric physics as elements of Earth and planetary sciences.
- 2. The Society shall promote the study of the atmospheres of the Earth and planets. This study shall include the interrelated physical, chemical and biological processes and their relationship to climate and to other geophysical and geographical matters.
- 3. The Society shall promote the development and application of laser sensing techniques and laser instrument architectures used to study the atmospheres of the Earth and other planets.
- 4. The Society shall encourage the clear scientific basis to the understanding of atmospheric physics and its applications, including the transfer of knowledge on planning, engineering, management, and economic aspects.
- 5. The Society shall promote the examination of the environmental effects of the evolving use and management of air resources by humans.
- 6. The Society shall promote advanced technologies in laser remote sensing and the deployment of laser remote sensors on surface-, air-, and space-based platforms for the purposes and objectives outlined in Article II, § 1, 2, 3, 4, and 5.
- 7. The Society shall offer a forum for discussion,

comparison, and publication of research results.

- 8. The Society shall further education at all possible levels, especially at graduate, Ph.D., and postdoctoral levels.
- 9. The Society shall encourage, facilitate, and coordinate research into and investigation of atmospheric and environmental problems and networking and space-based activities that require international cooperation.
- 10. The Society shall sponsor and encourage workshops and topical meetings for developing standard practices in the utilization of lidars, in their calibration procedures, in their safe use, and in mathematical techniques for determining the informational content of their data.
- 11. The Society shall be a USA-Registered nonprofit organization, and none of its net income or net worth shall inure to the benefit of its members. Its membership and activities shall be international in scope.

Article III. Offices and Membership

- 1. The ICLAS membership shall be comprised of individuals interested in the advancement of the objectives of the Society.
- 2. The elective officers of the ICLAS shall be:

The President, who shall be the Chairman The Working Group The Executive Committee

- 3. The term of office of the President shall be six years. Current and Past Presidents are ineligible for reelection.
- 4. Working Group members shall have six-year terms. Under extenuating circumstances, a two-year extension

may be granted to any member of the Working Group by a simple majority vote of the President and other Working Group members.

5. Executive Committee members in charge of Awards, Membership, and the Treasury shall have no term limitation. Past Presidents shall serve a six-year term on the Executive Committee immediately following their term as President.

Article IV. Nominations and Elections

1. Each nomination for ICLAS membership shall be submitted to the President or the Executive Committee in writing and include a résumé of the candidate's qualifications.

New members shall be elected by a simple majority of votes during an appropriate Members-Only Business Meeting (MOBM). The voting members include the President and members of the Working Group.

2. The Executive Committee person in charge of membership and the current President shall request nominations for the office of the President at least three months before the next International Laser Radar Conference (ILRC). A nominee must be a member of ICLAS.

The election of the President shall be conducted at a MOBM of the ICLAS. Each eligible member must be present to vote and is entitled to one vote. The votes shall be cast by secret ballot. The President shall be elected by a simple majority of votes. In the event of a tie in the first round of voting, a second round shall be held including only first-place candidates from the first round.

In the event of a tie in the second round of voting, the Executive Committee shall decide between the candidates and that person shall be declared elected. (If there exists an even number of Executive Committee members, the President shall vote with the Executive Committee in the third round.)

3. The Executive Committee person in charge of membership shall inform all participants of the

previous ILRC of upcoming vacancies in the Working Group at least three months prior to the next ILRC. At that time, nominations may be submitted for consideration of the ICLAS. On the basis of available nominations, a list of candidates will be established seeking to achieve a reasonable balance in their geographical and professional distribution.

4. The President and the Working Group shall elect the Executive Committee members by a simple majority vote.

The Past President becomes an ex officio member of the Executive Committee for a six-year term when the President-elect takes office.

Article V. Meetings

- 1. Meetings of members shall be held at a time and place designated by the President and the Executive Committee. Notice of each meeting shall be given to the membership no fewer than 60 days prior to the date on which the meeting shall be held. A quorum is constituted when at least 50 percent of the voting members of ICLAS are present.
- 2. The International Laser Radar Conferences (ILRCs) gather the laser remote sensing community and are convened during the even years, e.g. 2002. The ILRCs are held under the auspices of the ICLAS. ICLAS encourages conveners of national meetings covering similar technologies be held in odd years so as not to conflict with ILRCs.
- 3. The ICLAS shall support Topical Meetings and specific Working Groups after approval by a simple majority vote of the ICLAS.

Article VI. Amendments to the Constitution

Pursuant to the Constitution and Bylaws, the ICLAS shall have the power to adopt or amend the Constitution. The proposed amendment must be approved by a two-thirds majority vote of the ICLAS members eligible to vote.

Bylaws

Article VII. Parliamentary Authority

The rules contained in the current edition of Robert's Rules of Order Newly Revised shall govern the Society in all cases to which they are applicable and in which they are not inconsistent with the Constitution and these Bylaws and any special rules of order the Society may adopt.

Article VIII. Offices and Duties

- 1. The President
 - A. The President of the ICLAS shall be the executive officer.
 - B. Subject to appeal, it is the duty of the President to direct affairs in accordance with the Constitution, Bylaws, and decisions of the ICLAS.
 - C. It is the duty of the President to manage the business of the ICLAS; to preside at all meetings, call them to order, and allow motions to be heard; to preserve order and decorum; to conduct correspondence; and, to preserve and distribute the official documents and administrative records of ICLAS.

2. The Executive Committee

- A. The Executive Committee is charged with managing funds, membership, awards, and honors.
- B. The members of the Executive Committee may participate in discussions but are not eligible to vote.
- 3. The President and a member of the Executive Committee shall manage nominations and membership.
- 4. The President and a member of the Executive Committee shall maintain the Constitution and Bylaws.
- 5. The President and the members of the Executive Committee shall keep a record of ICLAS activities and proceedings.
- 6. The Treasurer shall collect the funds and disburse them in accordance with the decisions of the ICLAS.
 - A. The funds of the ICLAS shall be deposited in

- investment accounts of the ICLAS. Subject to appeal, they shall be at the disposal of the President and the Treasurer
- B. The Treasurer shall maintain records of all financial transactions and submit regular reports to the ICLAS.
- C. The Treasurer shall be a member of the Executive Committee.
- 7. It is the duty of the Working Group to conduct business as needed and represent constituent communities.

Article IX. Panels, Working Groups, and Rapporteurs

The ICLAS may create panels and Working Groups and may appoint rapporteurs. The President, to whom they shall report, shall appoint the Chairman and members of all such groups. Such groups shall exist only during the term between two successive ILRCs.

Article X. The International Laser Radar Conferences (ILRCs)

- 1. ILRC locations shall alternate between North America, Europe, and other countries and locations where meeting logistics and travel are feasible.
- 2. The ICLAS shall convene meetings at least twice during each ILRC. One of these meetings shall be a Members-Only Business Meeting where the President and the Working Group hold elections and conduct other business. The second shall be an Open Business Meeting.
- 3. The ILRCs are open to all scientists, and supporting engineers and technicians.
- 4. Four months after each ILRC, the ICLAS under the President's purview shall select the organizing committee and the location of the next ILRC pursuant to the proposals received. The next ILRC's Conference Chairman and his/her staff are responsible for all ILRC matters. The Conference Chairman of the ILRC shall keep the ICLAS President and Executive Committee informed of all activities associated with the organization of the ILRC.

Article XI. Publications

The President shall publish the Constitution and Bylaws in the ILRC book of abstracts and all follow-up publications.

Article XII. Prizes and Awards

1. Lifetime Achievement Award

A member of the Executive Committee is responsible for the Lifetime Achievement Award. The Lifetime Achievement Award recognizes exceptional contributions pursuant to the Society's objectives and is the most prestigious honor awarded by the ICLAS. The Lifetime Achievement Award shall be given once every two years to a single member. Those honored shall receive a clock or other appropriate award.

2. Inaba Prize

The ICLAS is responsible for the Inaba Prize, which is awarded for the best paper at the ILRC senior-authored by a scientist younger than 40 years of age. The Inaba prize includes one thousand two hundred US dollars and a plaque.

3. ILRC Awards

Some members associated with leadership positions of the hosting organization for an ILRC should receive plaques from the ICLAS that recognize their efforts. Typically, one plaque each is awarded to the Conference Chairman, the Chairman of the local Organizing Committee, and the Chairman of the Paper Selection Committee.

Article XIII. Official Language

English shall be the official language of the ICLAS and the ILRCs. The Constitution and Bylaws shall be prepared in English.

Article XIV. Amendments to the Bylaws

Pursuant to the Constitution and Bylaws, the ICLAS shall have the power to adopt or amend the Bylaws. The proposed amendment must be approved by a simple majority vote of the ICLAS members eligible to vote.

Part I

			
Session	10	Opening session	
		Oral Presentations	
10-1	Activ	e Remote Sensing and Climate Studies (Invited)	3
	Teruy	ruki Nakajima (Center for Climate System Research, The University of Tokyo)	
10-2	On Se	ome Lidar Developments for Atmospheric Research (Invited)	5
	Osan	u Uchino (Kobe Marine Observatory, Japan Meteorological Agency)	
10-3	A Re	view and Outlook for Lidar Science Including Space Programs (Invited)	9
	M. Pa	trick McCormick (Center for Atmospheric Sciences, Hampton University)	
Session	20	Lidar technologies	
		Oral Presentations	
Lidar m	ethod	S	
20-1	Back	ground Aerosols and Multiple Field-of-View Lidar	15
		A. P. Roy, Luc R. Bissonnette, Nathalie Roy (Defence Research and opment Valcartier)	
20-2		aple Multiple Scattering - Depolarization Relation of Water Clouds and Its	19
	Luc F	xiang Hu, Mark A. Vaughan, David M. Winker, Zhaoyang Liu, Vincent Noël, L. Bissonnette, Gilles Roy, Matthew McGill, Charles R. Trepte (Radiation ce Branch, NASA Langley Research Center)	
20-3		Determination of Quartz Concentration in the Tropospheric Mineral Aerosols hodology and First Results	23
	-	n Tatarov, Nobuo Sugimoto, Ichiro Matsui (National Institute for onmental Studies)	
Lidar sy	stems	, Lidar components	
20-4		ization Lidar Using a Liquid Crystal Variable Retarder	27
	-	h A. Shaw, Nathan L. Seldomridge, Kevin S. Repasky (Electrical and	
	Comp	outer Engineering Department, Montana State University)	

20-5	A 355-nm Rayleigh-Mie Lidar Using Two Michelson Interferometers as Spectral Analyzers for Multi-purpose Near-Field Measurements Nicolas Cezard, Agnès Dolfi-Bouteyre, Jean-Pierre Huignard, Pierre Flamant (French Aeronautics and Space Research Center (ONERA))	31
20-6	A New Lidar System for the Detection of Cloud and Aerosol Backscatter, Depolarization, Extinction, and Fluorescence Franz Immler, Ingo Beninga, Wilfried Ruhe, Bernhard Stein, Bernd Mielke, Soeren Rutz, Özden Terli, Otto Schrems (Alfred Wegener Institute for Polar and Marine Research)	35
Lidar s	ystems_	
20-7	Multi-Spectral Lidar System - Design, Build and Test S. Fastig, Y. Ehrlich, S. Pearl, E. Naor, Y. Kraus, T. Inbar, D. Katz (Electro-Optics Div., Soreq NRC)	39
20-8	Lidar System for Observations of Equatorial Lower and Upper Atmosphere Chikao Nagasawa, Makoto Abo, Yasukuni Shibata (Department of System Design, Tokyo Metropolitan University)	43
20-9	Meteorological Water Vapor Raman Lidar - Advances Todor S. Dinoev, Yuri Arshinov, Sergei Bobrovnikov, I. Serikov, B. Calpini, H. van den Bergh, V. Simeonov (Air Pollution Laboratory (LPAS), Swiss Federal Institute of Technology (EPFL))	47
20-10	Tropospheric Winds Profiling Lidar: Technology Development and Demonstration Jinxue Wang, Michael T. Dehring, Berrien Moore III, Floyd E. Hovis (Raytheon Santa Barbara Remote Sensing)	51
20-11	Wind Measurements with Incoherent Doppler Lidar Based on Iodine Filters at Night and Day Bing-Yi Liu, Zhi-Shen Liu, Zhi-Gang Li, Zhao-Ai Yan, Rui-Bin Wang, Zhao-Bin Sun (Ocean Remote Sensing Key Laboratory of the Ministry of Education of China, Ocean University of China)	55
20-12	Design and Development of a Scanning Airborne Direct Detection Doppler Lidar System Bruce Gentry, Matthew McGill, Geary Schwemmer, Michael Hardesty, Alan W. Brewer, Thomas Wilkerson, Robert Atlas, Marcos Sirota, Scott Lindemann (NASA Goddard Space Flight Center, Laboratory for Atmospheres)	59
20-13	Differential Absorption Lidar for Tropospheric Ozone Measurement Using Stimulated Raman Scattering in CO2 Masahisa Nakazato, Tomohiro Nagai, Tetsu Sakai, Yasuo Hirose (Meteorological Research Institute)	63

20-14	LIBS-Lidar Using Femtosecond Terawatt Laser for Measurement of Constituent of Microparticles in Air	67
	Takashi Fujii, Naohiko Goto, Kiyohiro Sugiyama, Megumu Miki, Takuya Nayuki,	
	Kazuhisa Nakajima, Koshichi Nemoto (Electric Power Engineering Research	
	Laboratory, Central Research Institute of Electric Power Industry)	
Signal	processing and retrieval methods	
20-15	Noise Reduction in Lidar Signal by Empirical Mode Decomposition	71
	Songhua Wu, Zhishen Liu, Bingyi Liu (Ocean University of China, Ocean Remote Sensing Institute)	
20-16	Application of the Chi-Squared Technique to Quantify the Aerosol Extinction with a Raman Lidar	75
	Felicita Russo, David N. Whiteman, Belay Demoz, Raymond M. Hoff (University of Maryland Baltimore County)	
Session	a 2P Lidar technologies	
	Poster Presentations	
Lidar n	nethods	
2P-1	A New Type of Lidar for Atmospheric Optical Turbulence	81
	Gary G. Gimmestad, D.W. Roberts, J.M. Stewart, J.W. Wood, F.D. Eaton (Georgia Tech Research Institute)	
2P-2	Femtosecond Pump-Probe Lidar for Discriminating Bioaerosols from Background Urban Particles	85
	F. Courvoisier, V. Boutou, L. Guyon, J. Kasparian, G. Mejean, R. Ackermann, M.	
	Roth, H. Rabitz, Jean-Pierre Wolf (LASIM, UMR CNRS 5579, Université Claude Bernard Lyon)	
2P-3	Rotational Angle Measurement of Propagating Beam Polarization Under High-Voltage Discharge	87
	Tatsuo Shiina, Toshio Honda, Tetsuo Fukuchi (Faculty of Engineerng, Chiba University)	
2P-4	Laser Radar Sensor for Hostile Environments	91
	Mario Ferri De Collibus, L. Bartolini, A. Coletti, G. Fornetti, C. Neri, F. Pollastrone , M. Riva, L. Semeraro (ENEA- Italian national agency for technologies)	
2P-5	Remote Detection of Narcotics and Explosives by Fluorescence Lidar	95
	Igor Veselovskii, M. Korenskii, S. Vartapetov (Physics Instrumentation Center, Moscow)	

2P-6	Remote Imaging Laser-Induced Breakdown Spectroscopy and Remote Ablative Cleaning Rasmus Grönlund, Mats Lundqvist, Sune R. Svanberg (Atomic Physics Division, Lund Institute of Technology)	99
2P-7	Differential Polarization Reflectivity at 1.574 μ m Eye-Safe Backscattering Lidar J. Fochesatto, Kenneth Sassen, R. L. Collins (Geophysical Institute, University of Alaska Fairbanks)	103
2P-8	Remote Monitoring of Airborne Asbestos Particles Using Laser-Induced Fluorescence Imaging A. Ohzu, F. Esaka, H. Kawakita, R. Okamoto, Masaharu Imaki, Takao Kobayashi (Japan Atomic Energy Agency)	107
Scatter	ing theory, Lidar equation, etc.	
2P-9	Influence of Multiple Scattering on Lidar Depolarization Measuremens with an ICCD Camera Nathalie Roy, Gilles Roy (Lidarcam)	109
2P-10	Intensity Distribution of Doubly Scattered Polarized Laser Radiation in the Focal	113
	Plane of Lidar Receiver Vadim Griaznov, Igor Veselovskii, Paolo Di Girolamo, Michail Korenskii, Donato Summa (Physics Instrumentation Center)	
2P-11	Lidar Equation with the Joint Account of the Small-Angle Multiple Scattering and the Single Anisotropic Scattering at Large Scattering Angles Victor V. Veretennikov (Institute of Atmospheric Optics of the SB RAS 1, Akademicheskii Prospect)	117
2P-12	Calculation of Lidar Signals for Hexagonal Ice Crystals A. G. Borovoi, N.V. Kustova, D.A. Dzhurmiy (Institute of Atmospheric Optics)	121
Atmosr	pheric optics	
2P-13	Atmospheric Propagation Experiment of Long Range Non-Diffracting Beam Using an Annular-Beam Infrared Laser Yuji Suzuki, Yasuharu Mine, Toshihiro Okamura, Tadashi Aruga (Second Research Center, TRDI, Japan Defence Agency)	125
2P-14	Enhanced Femtosecond Lidar Backscattering by a Liquid Particle Cloud Gennady Matvienko, Yurii Geints, Alexander Zemlyanov, Georgii Krekov, Margarita Krekova (Institute of Atmospheric Optics SB RAS)	127
2P-15	Wavefront Formation of Propagating Beam in Cloud-Modeled Random Media Yosuke Tsuge, Tatsuo Shiina, Toshio Honda (Image Science and Technology, Graduate School of Chiba University)	131

Lasers	for lidars	
2P-16	High-Energy Multipass Forward Raman Shifter as an Eye-Safe Laser Source for Lidar	133
	Scott M. Spuler, Shane D. Mayor (National Center for Atmospheric Research)	
2P-17	A Narrow Linewidth Singly Resonant ZGP OPO for Multiple Lidar Applications Jirong Yu, Hyung R. Lee, Yingxin Bai, Norman P. Barnes (NASA Langley Research Center)	137
2P-18	Development of Single Frequency All Solid-State Lasers for Lidar Application Weibiao Chen, Jun Zhou, Ting Yu, Xiaolei Zhu (Shanghai Institute of Optics and Fine Mechanics)	139
2P-19	Demonstration of an Optical Parametric Oscillator System at 1.57μ m for Integrated Path Differential Absorption Lidar Measurements of Carbon Dioxide Axel Amediek, Andreas Fix, Martin Wirth, Gerhard Ehret (DLR Oberpfaffenhofen, Institut für Physik der Atmosphäre)	143
2P-20	High-Energy Optical Parametric Oscillator by Using 5mm-Thick Periodically Poled MgO:LiNbO3 H. Ishizuki, J. Saikawa, T. Taira (Laser Research Center for Molecular Science, Institute for Molecular Science)	147
2P-21	Development of a Laser Transmitter for the 1.6 μm CO2 DIAL Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata, Masahisa Nakazato (Tokyo Metropolitan University)	149
Lidar c	omponents	
2P-22	Evaluation of the Fiber Filter for an Incoherent Doppler Lidar Yasukuni Shibata, Chikao Nagasawa, Makoto Abo (Tokyo Metropolitan University)	151
2P-23	Simulation of Random Electron Multiplication in CALIPSO Lidar Photomultipliers Kathleen A. Powell, Zhaoyan Liu, Bill Hunt (Science Applications International Corporation)	153
2P-24	Water Vapour DIAL Optical Frequency Laser Reference System Renaud Matthey, Christoph Affolderbach, Gaetano Mileti, Stephane Schilt, Daniela Werner, Sang-Hoon Chin, Laura Abrardi, Luc Thevenaz (Observatoire cantonal de Neuchâtel, rue de l'Observatoire)	157
<u>Lidar s</u>	<u>ystems</u>	
2P-25	REAL: 1.5 Micron Wavelength Scanning Polarization Lidar Shane D. Mayor, Scott M. Spuler, Bruce M. Morley, Eric Loew, Tammy M. Weckwerth, Stephan De Wekker, Daniel J. Kirshbaum (National Center for Atmospheric Research)	161

2P-26	Development of a Raman Lidar System for Hydrogen Gas Detection Hideki Ninomiya, Kouji Ichikawa, Tetsuo Fukuchi (Electrotechnical Department Shikoku Research Institute)	165
2P-27	Airborne Direct Detection UV Lidar N. P. Schmitt, W. Rehm, T. Pistner, P. Zeller, H. Diehl, P. Navé (EADS Corporate Research Centre)	167
2P-28	Temperature and Water Vapor Raman Lidar for Observation of Land-Atmosphere Interactions Ilya Serikov, Pablo Ristori, Martin Froidevaux, Todor Dinoev, Marian Taslakov, Valentin Simeonov, Yuri Arshinov, Sergei Bobrovnikov, Marc B. Parlange, Hubert Van den Bergh (Swiss Federal Institute of Technology, EPFL ENAC ISTE EFLUM)	171
2P-29	General Methodology Based on Dimensionless Parameterization for Lidar Performance Assessment Ravil Agishev, Barry Gross, Adolfo Comerón, Fred Moshary, Samir Ahmed, Alexander Gilerson (Kazan State Technical University)	175
2P-30	New Troposphere Lidar System in Operation at Alomar (69°N, 16°E) Max Frioud, Michael Gausa, Gerd Baumgarten, Jon Egill Kristjansson, Ivan Føre (ALOMAR/Andøya Rocket Range; Andenes)	179
2P-31	Aerosol Lidar Measurements from an Ultra-Light Aircraft in the Frame of the African Monsoon Multidisciplinary Analysis (AMMA) Patrick Chazette, Joseph Sanak, Marie Geleoc, François Dulac (Laboratoire des Sciences du Climat et de l'Environnement)	183
2P-32	Examination of Reductions in Detected Skylight Background Signal Attainable in Elastic Backscatter Lidar Systems Using Polarization Selection Samir Ahmed, Y. Hassebo, B. Gross, M. Oo, F. Moshary (Optical Remote Sensing Laboratory - The City College of the City University of New York)	187
2P-33	Can a Micro-Pulse Lidar Measure Raman Nitrogen Signals from the Atmosphere? T.A. Berkoff, E. Welton, J. Spinhirne (UMBC/NASA GSFC)	191
2P-34	A Study of Compact Lidar for Industrial Use Takashi Higashikawa, Tsuyoshi Yokozawa (INC Engineering Co., Ltd)	195
2P-35	Dual Polarization Micro Pulse Lidar for Tropical Aerosol-Cloud-Climate Interaction Studies at Pune, India P.C.S. Devara, P. Ernest Raj, K.K. Dani, G. Pandithurai, Y. Jaya Rao (Indian Institute of Tropical Meteorology)	197

2P-36	An Eye-Safe, Tunable Lidar Transmitter at $1.45\mu\text{m}$ Based on a Cr4+:YAG Laser Anna Petrova-Mayor, Volker Wulfmeyer, Petter Weibring (Institute of Physics and Meteorology, University of Hohenheim)	201
2P-37	Lidars Combined with Sun Photometers Used for Atmospheric Correction of Earth Observation Images Wei Gong, Zhongmin Zhu, Yingying Ma, Mengyu Liu, Zhongyu Hao (State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing)	205
2P-38	Development of a Two-Wavelength Lidar System with Two Receive Channels Bo Liu, Jun Zhou (Anhui Institute of Optics and Fine Mechanics)	209
2P-39	Bistatic Measurement of Atmospheric Aerosol Distributions by Using an Imaging Lidar Ikue Kouga, Yohei Yamaguchi, Shunsuke Fukagawa, Nobuo Takeuchi, Hiroaki Kuze, Makoto Sasaki, Yoichi Asaoka, Satoru Ogawa (Center for Environmental Remote Sensing (CEReS),)	211
2P-40	Automated Lidar Data Analyzer (ALDA) for RAMSES - the Automously Operating German Meteorological Service Raman Lidar for Atmospheric Moisture Sensing Ina Mattis, Volker Jaenisch (Leibniz Institute for Tropospheric Research)	215
2P-41	Rotational Raman Temperature Lidar and Data Calibration Kiyotaka Uchida, Toshikazu Hasegawa, Dengxin Hua, Takao Kobayashi (EKO Instruments Co. Ltd.)	219
2P-42	Development of Temperature and Humidity Lidar for Sensing Lower Troposphere Toshikazu Hasegawa, Kiyotaka Uchida, Dengxin Hua, Takao Kobayashi (EKO Instruments Co. Ltd.)	223
2P-43	Combining Near- and Far-Range Channels of a Pure Rotational Raman Lidar via Fiber Coupled Dual Input Double Grating Monochromator Sergei Bobrovnikov, Yuri Arshinov, I.Serikov, J.Bösenberg, H.Linné (Institute for atmospheric optics)	225
2P-44	Development of Ultraviolet Multi-Spectrum Lidar for Meteorological Applications Takao Kobayashi, Masaharu Imaki, Hisaji Kawai (Graduate School of Engineering, University of Fukui,)	227
2P-45	Ultraviolet High-Spectral Resolution Lidar for Measuring Atmospheric Optical Parameters of Aerosols and Clouds Yuji Iwasaki, Masaharu Imaki, Takao Kobayashi (Graduate School of Engineering, University of Fukui,)	231

2P-46	High-Spectral-Resolution Lidar for Accurate Observation of Aerosol, Cirrus Clouds and Water Vapor Profiles at Xi'an, China Jun Liu, Xiaoquan Song, Dengxin Hua, Yan Li, Zhishen Liu, Takao Kobayashi (Xi'an University of Technology)	233
2P-47	A Comparative Study on Fabry-Perot Interferometer and Iodine Vapor Filter for Direct- Detection Doppler Wind Measurements with a Cabanne-Mie Lidar Jia Yue, Chiao-Yao She, John W. Hair, Jin-Jia Quo, Song-Hua Wu, Zhao-Ai Yan, Zhi-Shen Liu (Physics Department, Colorado State University)	235
2P-48	Receiver of a Mobile Direct-Detection Doppler Wind Lidar Jiqiao Liu, Lingbing Bu, Jun Zhou, Ting Yu, Weibiao Chen (Shanghai Institute of Optics and Fine Mechanics)	239
2P-49	Design and Development of an 8-Wavelength Raman-DIAL System for the Retrieval of Ozone, Water Vapor and the Optical and Microphysical Properties of Aerosols in the Troposphere R.E. Mamouri, A. Papayannis, G. Chourdakis, G. Georgoussis, I. Binietoglou (National Technical University of Athens, Physics Department, Laser Remote Sensing Laboratory)	241
2P-50	Remote Methane Gas Imaging System Using Infrared Optical Parametric Up- Conversion Detection Masaharu Imaki, Satoshi Hirota, Hironori Inaba, Takao Kobayashi (Graduate School of Engineering, University of Fukui,)	243
2P-51	Radon Monitoring for Earthquake Prediction Using Hybrid UV DIAL-Phoswich System Parviz Parvin, Gholam-Reza Davoud-Abadi, Hasan Kariminezhad (Physics Department, Amirkabir University of Technology)	245
2P-52	Preliminary Testing of a Water-Vapor Differential Absorption Lidar (DIAL) Using a Widely Tunable Amplified Diode Laser Source Michael D. Obland, Kevin S. Repasky, Joseph A. Shaw, John L. Carlsten (Physics Department, Montana State University)	249
2P-53	Toward a Multi-Wavelength Depolarization Lidar Using a Coherent White Light Continuum Toshihiro Somekawa, Chihiro Yamanaka, Masayuki Fujita, Maria Cecillia Galvez (Department of Earth and Space Science, Osaka University)	253

2P-54	25J - 45TW Laser Based White-Light Lidar R. Ackermann, N. Lascoux, E. Salmon, J. Kasparian, N. Blanchot, O. Bonville, A. Boscheron, P. Canal, M. Castaldi, O. Hartmann, C. Lepage, L. Marmande, E. Mazataud, G. Mennerat, L. Patissou, D. Raffestin, S. Champeaux, L. Bergé, C. Guet, P. Béjot, J. Extermann, L. Bonacina, J. P. Wolf (LASIM, UMR CNRS 5579, Université Claude Bernard Lyon)	257
2P-55	Improvements of Performance in All-Fiber Coherent Doppler Lidar (CDL) System with Considering Non-Linear Optical Effects Toshiyuki Ando, Masashi Furuta, Hisamichi Tanaka, Tomoya Matsuda, Masahiro Nagashima, Shumpei Kameyama, Yoshihito Hirano (Mitsubishi Electric Corporation, Information Technology R&D Center)	259
Lidar s	ignal processing	
2P-56	Lidar Detection Algorithm Based on Hyperspectral Anomaly Detection Avishai Ben-David, Richard G. Vanderbeek, Charles E. Davidson (RDECOM, Edgewood Chemical Biological Center)	263
2P-57	Lidar Capabilities for Martian Dust Analysis John F. Hahn, Vladimir Podoba, Arkady Ulitsky, Diane Michelangeli, Allan I. Carswell (Optech Incorporated)	267
2P-58	The Signal Processing by Empirical Mode Decomposition for Incoherent Doppler Wind Lidar Based on Iodine Filter Na Zhang, Songhua Wu, Ruibin Wang, Zhigang Li, Bingyi Liu, Zhishen Liu (Ocean Remote Sensing Laboratory of Education of China, Ocean Remote Sensing Institute (ORSI), Ocean University of China)	271
2P-59	Wavelet Signal Denoising Applied to Multiwavelength-Depolarization White Light Lidar Measurement Maria Cecilia D. Galvez, Toshihiro Somekawa, Chihiro Yamanaka, Masayuki Fujita (De La Salle University)	275
Retriev	val methods	
2P-60	Methods for the Retrieval of Microphysical Aerosol Parameters from Optical Data Christine Böckmann, Andreas Kirsche, Christoph Ritter (Institute of Mathematics, Potsdam University,)	279
2P-61	Determination of Extinction Coefficient Profiles from Multiangle Lidar Data Using a "CLONE" of the Optical Depth Vladimir A. Kovalev, Cyle Wold, Jenny Newton, Wei Min Hao (USDA Forest Service, Fire Sciences Laboratory)	283

2P-62	A New Method for the Retrieval of Aerosol Optical Parameters from Elastic Backscatter Lidar Data	287
	Anca Nemuc, Doina Nicolae, Emil Carstea, Camelia Talianu (National Institute of Research and Development for Optoelectronics (INOE),)	
2P-63	2-Dimensional Regularization for the Retrieval of Profiles of Microphysical Aerosol Properties from Multiwavelength Raman Lidar Alexei Kolgotin, Detlef Müller (Physics Instrumentation Center, Troitsk - Moscow, Russia)	291
2P-64	Multi-Sensor Data Fusion: Part I Mark Vaughan, Yongxiang Hu, Sharon Rodier, Tom Arnold, Dennis Hlavka (SAIC)	295
2P-65	Multi-Sensor Data Fusion: Part II Sharon Rodier, Yongxiang Hu, Mark Vaughan, Dennis Hlavka, Tom Arnold (SAIC)	299
Educat	<u>ion</u>	
2P-66	Under Graduate Lidar Education at Georgia Tech. L.L. West, A. K. Garrison, G. G. Gimmestad, D.W. Roberts, J. M. Stewart, J. W. Wood, A.L. Bowling (Georgia Institute of Technology)	303
Session	Oral Presentations	
Aeroso	ls and clouds	
30-1	Comparison of Aerosol Microphysical Parameters Retrieved from Multi-Wavelength Lidar and Sun Photometer	309
	I. Veselovskii, D.N. Whiteman, O.Dubovik, A. Kolgotin, M. Korenskii (Physics Instrumentation Center)	
30-2	Pollution in the Free Troposphere: Geometrical, Optical, and Microphysical Characterization with Multiwavelength Raman Lidars Ina Mattis, Detlef Müller, Albert Ansmann, Dietrich Althausen, Ulla Wandinger (Leibniz Institute for Tropospheric Research)	313
30-3	Characteristics of Biomass Burning Aerosols over SE Europe Determined from Lidar and Sunphotometric Measurements Dimitris Balis, Vassilis Amiridis, Elina Giannakaki, Stylianos Kazadzis, Antti Arola, Alexandros Papayannis (Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki)	317

30-4	Lidar Ratio Climatology: 5 Years of Systematic Raman Lidar Measurements over Potenza, Italy Lucia Mona, Aldo Amodeo, Giuseppe D'Amico, Marco Pandolfi, Gelsomina Pappalardo (Istituto di Metodologie per l'Analisi Ambientale CNR-IMAA)	321
30-5	Observations of Mixed-Phase Clouds Using Airborne Lidar and In-Situ Instrumentation Iwona S. Stachlewska, Jean - Francois Gayet, Christophe Duroure, Alfons Schwarzenboeck, Olivier Jourdan, Valery Shcherbakov, Roland Neuber (Alfred-Wegener-Institute for Polar and Marine Research)	325
30-6	Optical-Microphysical Modeling of a Synoptically Forced Cirrostratus Jens Reichardt, Susanne Reichardt, Ruei-Fong Lin, Michael Hess, David O'C. Starr (Richard Aßmann Observatorium, Deutscher Wetterdienst)	329
30-7	Optical and Microphysical Properties of Upper Clouds Measured with the Raman Lidar and Hydrometeor Videsonde Tetsu Sakai, Narihiro Orikasa, Tomohiro Nagai, Masataka Murakami, Kenichi Kusunoki, Kazumasa Mori, Akihiro Hashimoto, Takatsugu Matsumura, Takashi Shibata (Meteorological Research Institute)	333
30-8	Microphysics of Clouds and Aerosols by Combined Use of Lidar and Cloud Radar Hajime Okamoto, Tomoaki Nishizawa, Kaori Sato, Shinichi Otake, Minami Sensu, Toshihiko Takemura, Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu, Hiroshi Kumagai, Yuichi Ohno, Toshiaki Takano, Teruyuki Nakajima (Tohoku University)	337
30-9	Use of Lidar and Radar Data for Cirrus Cloud Model Initialization and Validation Jennifer M. Comstock, Ruei-Fong Lin, David O. Starr, Sally A. McFarlane (PacificNorthwest National Laboratory)	341
30-10	Polarization Lidar Studies of Alaskan Forest Fire Smoke, and Indirect Effects on Clouds Kenneth Sassen, Patrick Cobb, Jiang Zhu, Vitaly Khvorostyanov (Geophysical Institute, University of Alaska Fairbanks)	345
CO2 m	easurements	
30-11	Lidar Activities at LMD/IPSL Dedicated to Atmospheric Carbon Dioxide Monitoring, Carbon Cycle and Climate Pierre H. Flamant (Laboratoire de Meteorologie Dynamique Institut Pierre Simon Laplace (LMD/IPSL), Ecole Polytechnique)	347
30-12	Design, Development, and Validation of a High Sensitivity DIAL System for Profiling Atmospheric CO2 Syed Ismail, Grady J. Koch, M. N. Abedin, T. Refaat, K. Davis, C. Miller, Upendra N. Singh, S. Vay, T. Mack (NASA Langley Research Center)	349

Session 40 Upper atmosphere (tropopause, stratosphere, middle atmosphere and mesopause		use)
	Oral Presentations	
40-1	Development of Rayleigh Doppler Lidar System for Measuring Middle Atmosphere Winds Raghunath Karnam, Amit Kumar Patra, Narayana Rao Daggumati (National Atmospheric Research Laboratory)	355
40-2	Tropical Cirrus Clouds Near Cold Point Tropopause Observed under Supersaturated Condition: Simultaneous Observations by Lidar and Cryogenic Frost Point Hygrometer Takashi Shibata, Holger Vömel, Saipul Hamdi, Sri Kaloka, Fumio Hasebe, Masatomo Fujiwara, Masato Shiotani (Graduate school of Environmental Studies, Nagoya University)	359
40-3	Multiwavelength Lidar PSC Measurements Made at ALOMAR (69°N) during Winter 2005 J. Jumelet, C. David, S. Bekki, P. Keckhut (Service d'Aeronomie IPSL)	361
40-4	Solar Campaign: First Results of Ozone Profile Measurements at Rio Gallegos (51° 55' S, 69°14' W), Argentina Elian A. Wolfram, Jacobo Salvador, Juan Pallotta, Raul D'Elia1, Lidia Otero, Sophie Godin-Beekmann, Andrea Pazmino, Hideaki Nakane, Eduardo Quel (Centro de Investigaciones en Laseres y Aplicaciones, CEILAP (CITEFA-CONICET))	365
40-5	Gravity Wave Activity in the Middle Stratosphere during Winter as Observed by the ALOMAR O3-Lidar and the Bonn University Lidar at Esrange in Northern Scandinavia U. Blum, UP. Hoppe, K. H. Fricke (Forsvarets forskningsinstitutt)	369
40-6	Polar Mesosphere Temperature Observations by Lidar and Falling Sphere at 78°N J. Höffner, J. Lautenbach, C. Fricke-Begemann, FJ. Lübken (Leibniz-Institute of Atmospheric Physics)	373
40-7	Recent Trend in Narrowband Sodium Lidar and Science Enabled in the Mesopause Region Chiao Y. She (Physics Department, Colorado State University)	377
40-8	An All Solid-State Transportable Narrowband Sodium Lidar for Mesopause Region Temperature and Horizontal Wind Measurements Joseph D. Vance, Chiao-Yao She, Takuya D. Kawahara, Bifford P. Williams, Qian Wu (Physics Dept. Fort Collins, Colorado State University)	381

40-9	Alexandrite-Ring-Laser-Based Fe Doppler Lidar for Mobile/Airborne Deployment Xinzhao Chu (University of Colorado)	385
40-10	Mars and Earth Upper Atmosphere Sensing Simulations of Rayleigh and Na Resonance Lidar from Spacecraft G. Swenson, P. Dragic, L. Waldrop, J. Plane, Chad Carlson, A. Liu (University of Illinois)	389
Session	n 3P Climate change (climatology, aerosol-cloud interaction, etc.) Poster Presentations	
Climat	e change (climatology, aerosol-cloud interaction, etc.)	
3P-1	Eight Years of Continuous Raman Lidar Measurements of Water Vapor, Aerosol and Clouds Over the Southern Great Plans Diana Petty, Dave Turner, John Goldsmith, Jennifer Comstock, Zhien Wang (Pacific Northwest National Laboratory)	395
3P-2	Arctic Observations with the University of Wisconsin High Spectral Resolution Lidar Edwin W. Eloranta, Igor A. Razenkov, Joesph P. Garcia (University of Wisconsin)	399
3P-3	Characters of Marine Atmospheric Boundary Layer Structure and Aerosol Profiles Observed by HSRL Liu Zhi-shen, Yan Zhao-ai, Li Zhi-gang, Guo Jin-jia, Sun Zhao-bin (Ocean Remote Sensing key Laboratory of Ministry of Education, Ocean University of China)	403
3P-4	Canceled	
3P-5	The NASA Langley Airborne High Spectral Resolution Lidar for Measurements of Aerosols and Clouds John W. Hair, Chris A. Hostetler, Richard A. Ferrare, Anthony L. Cook, David B. Harper (NASA Langley Research Center)	411
3P-6	Cirrus Clouds Climatology over the Equatorial Region Makoto Abo, Chikao Nagasawa, Yasukuni Shibata (Department of System Design, Tokyo Metropolitan University)	415
3P-7	Analysis of Cirrus Clouds by Using the ICESat/GLAS Data Nawo Eguchi, Tatsuya Yokota, Gen Inoue (National Institute for Environmental Studies)	419
3P-8	The Coastal Aerosol Microphysical Model G. Kaloshin, J. Piazzola (Institute of Atmospheric Optics)	423

3P-9	Spectral Transparency of the Sea and Coastal Atmosphere Surface Layer G. Kaloshin (Institute of Atmospheric Optics)	427
3P-10	Influence of the Large Aerosol Particles on the Infrared Propagation in Coastal Areas G. Kaloshin, J. Piazzola (Institute of Atmospheric Optics)	429
3P-11	Variation of Aerosol Size with Altitude in the Marine Boundary Layer Inverted from Multi-Wavelength Lidar Backscatter Data Barry Lienert, David M. Tratt, Robert T. Menzies, James D. Spinhirne (HIGP/SOEST, University of Hawaii)	433
3P-12	Evidence of Discrepancies between Columnar-Averaged Lidar Ratios Measured by Sunphotometer and Lidar by Means of a Raman Lidar in Barcelona Michaël Sicard, Francesc Rocadenbosch, Aurélien Hénon, Carlos Pérez, Alejandro Rodriguez, Constantino Muñoz, David Garcia Vizcaino, Adolfo Comerón, Jose Maria Baldasano (Universitat Politecnica de Catalunya)	437
3P-13	Monitoring of Vertical Aerosol Profiles Using Micro Pulse Lidar S. L. Jain, B. C. Arya, Arun Kumar, Y. Nazeer Ahammed (National Physical Laboratory)	441
3P-14	Aerosol Optical Properties Retrieved from DUAL-Wavelength Polarized Lidar Measurements during Mirai MR01K02 Cruise Tomoaki Nishizawa, Hajime Okamoto, Toshihiko Takemura, Kazuma Aoki, Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu (Meteorological Research Institute / JSPS research fellow)	443
3P-15	Large Wavelength Dependence of the Lidar Ratio in Asian Dust Layers Observed by Dual-Wavelength Raman Lidar Toshiyuki Murayama, Miho Sekiguchi (Tokyo University of Marine Science and Technology)	447
3P-16	Comparison of Vertical Extinction Profiles Obtained from 2 Ground-Based Mie-Scattering Lidars at Gosan, Korea during ABC-EAREX2005 Man-Hae Kim, Soon-Chang Yoon, Sang-Woo Kim, Nobuo Sugimoto, Atsushi Shimizu (Seoul National University)	449
3P-17	Two-Year-Observations of Optical Properties of the Tropospheric Aerosol and Clouds by a High-Spectral-Resolution Lidar over Tsukuba, Japan Boyan Tatarov, Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu (National Institute for Environmental Studies)	451
3P-18	Multiwavelength and Depolarization Lidar Measurements of Clouds and Aerosols Tetsuo Aoki, Kohei Mizutani, Shoken Ishii, Richard L Collins, J. Fochesatto (National Institute of Information and Communications Technology)	455

3P-19	On the Potential of Lidar with Multiple Fields of View for Retrieval of Cloud Particle Parameters I. Veselovskii, M. Korenskii, V. Griaznov, D. Whiteman, M. McGill, G. Roy, L. Bissonnette (Physics Instrumentation Center)	457
3P-20	Validating Lidar Retrievals of Cloud Parameters Luc R. Bissonnette, Gilles Roy, Gregoire Tremblay (Defence R&D Valcartier)	461
3P-21	Lidar-Based Retrievals of the Microphysical Properties of Mixed-Phase Arctic Stratus Clouds and Precipitation Gijs de Boer, Edwin Eloranta (University of Wisconsin - Madison)	465
3P-22	Cloud Characterization with the PHOENIX Field Lidar Leonce Komguem, Jim Whiteway, Clive Cook, Mike Illnicki (Dept of Earth, Space Science & Engineering, York University)	469
3P-23	Application of Iterative Airborne Lidar Inversion and Its Interpretation by Means of ECMWF Operational Analysis Iwona S. Stachlewska, Andreas Dörnbrack (Alfred-Wegener-Institute for Polar and Marine Research)	471
3P-24	Cloud Optical Depth Measurements from Mie Lidar and EL NIÑO Occurrence in Manila (14.64N, 121.07E), Philippines Nofel Lagrosas, Francia B. Avila, Armelle Reca C. Remedio, Susana Dorado, John Holdsworth (Department of Physics, Ateneo de Manila University)	475
3P-25	High-Altitude Cirrus from Lidar Measurements over HEFEI (31.90°N,117.16°E), China Jun Zhou, Xinlian Xue, Dong Liu (Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Science)	479
3P-26	Mean Optical Characteristics of Cirrus Clouds at a Mid-Latitude EARLINET Station Elina Giannakaki, Vassilis Amiridis, Dimitris Balis (Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki)	483
3P-27	Development of Algorithms for Air-Motion, Ice Sedimentation and Microphysics Using Lidar and Radar Kaori Sato, Hajime Okamoto, Toshihiko Takemura, Nobuo Sugimoto, Hiroshi Kumagai (Tohoku University)	487
3P-28	Tentative to Retrieve Aerosol Complex Refractive Index from a Synergy between Lidar and In Situ Measurements Jean-Christophe Raut, Patrick Chazette, Joseph Sanak, Pierre Couvert (Laboratoire mixte CEA-CNRS-UVSQ)	491

3P-29	Coincident Lidar and SAGE II Cirrus Clouds Measurements at Camaguey, Cuba Boris Barja, Juan Carlos Antuna (Camagüey Lidar Station. Meteorological Center of Camagüey)	495
3P-30	Mass Extinction Efficiency for Tropospheric Aerosols from Potable Automated Lidar and β -Ray SPM Counter Gerry Bagtasa, Nobuo Takeuchi, Shunsuke Fukagawa, Hiroaki Kuze, Tatsuo Shiina, Suekazu Naito, Akihiro Sone, Hirofumi Kan (Center for Environmental Remote Sensing, Chiba University)	499
3P-31	Optical Properties of Aerosols Measured by Lidar, Sun-Photometer, and Other Ground Based Instruments J. B. Nee, C. W. Chiang (Department of Physics, National Central University)	503
3P-32	Application of the Two-Stream Evaluation for a Case Study of Arctic Haze over Spitsbergen Christoph Ritter, Iwona Stachlewska, Roland Neuber (Alfred-Wegener-Institute for Polar and Marine Research)	507
3P-33	Seasonal Dependence of Geometrical and Optical Properties of Tropical Cirrus Determined from Lidar, Radiosonde, and Satellite Observations over the Tropical India Ocean (Maldives) Patric Seifert, Albert Ansmann, Dietrich Althausen, Ulla Wandinger, Andrew J. Heymsfield, Steven T. Massie (Leibniz Institute for Tropospheric Research)	511
3P-34	First Results from CAELI - Cesar Water Vapour, Aerosol and Cloud Lidar Arnoud Apituley, Keith Wilson, Charlos Potma, Daan Swart (RIVM - National Institute of Public Health and the Environment)	515
3P-35	Rainfall Droplet Measurement by a Portable Automated Lidar (PAL) Akihiro Sone, Hirofumi Kan, Nofel Lagrosas, Hiroaki Kuze, Nobuo Takeuchi (Hamamatsu Photonics K.K.)	519
3P-36	Newly Developed Portable Lidar System for Atmospheric Aerosol and Cloud Studies Yellapragada Bhavani Kumar (National Atmospheric Research Laboratory (NARL))	523
3P-37	The Vertical Distribution of Aerosols: Lidar Measurements vs. Model Simulations R. A. Ferrare, Edward V. Browell, J.W. Hair, Syed Ismail, D. D. Turner, M. Clayton, Carolyn F. Butler, Vincent G. Brackett, M.A. Fenn, A. Notari, S.A. Kooi, Sharon P. Burton, M. Chin, S. Guibert, M. Schulz, C. Chuang, M. Krol, S. E. Bauer, X. Liu, G. Myhre, Ø. Seland, D.Fillmore, S. Ghan, S. Gong, P. Ginoux, T. Takemura (NASA Langley Research Center)	527

CO ₂ m	neasurements	
3P-38	Profiling CO2 within the Planetary Boundary Layer John Burris, Arlyn Andrews, Haris Riris, Jim Abshire, Amelia Gates, Mike Krainak, Xiaoli Sun (NASA Goddard Space Flight Center)	531
3P-39	The Pressure Shift of Carbon Dioxide for the On-Line Wavelength of 1.6 μ m CO2 DIAL Daisuke Sakaizawa, Chikao Nagasawa, Tomohiro Nagai, Makoto Abo, Yasukuni Shibata, Masahisa Nakazato (Tokyo Metropolitan University)	535
3P-40	Tropospheric CO2 DIAL Measurements F. Gibert, P. H. Flamant, D. Bruneu (Laboratorie de Meteorologie Dynamique, Ecole Polytechnique)	537
3P-41	Development of the CO2 DIAL System Using 1.6 μ m Absorption Band Tomohiro Nagai, Chikao Nagasawa, Makoto Abo, Yasukuni Shibata, Jun Ono, Daisuke Sakaizawa, Masahisa Nakazato (Meteorological Research Institute)	541
Session	upper atmosphere (tropopause, stratosphere, middle atmosphere and mesopause) Poster Presentations	use)
4P-1	Lidar Observations of Extremely Thin Clouds at the Tropical Tropopause Franz Immler, Otto Schrems (Alfred Wegener Institute for Polar and Marine Research)	547
4P-2	Evaluating the Capabilities of the CEILAP Tropospheric Lidar, for Stratospheric Aerosols Measurements René Estevan, Juan Carlos Antuña, Mario B. Lavorato (Camaguey Lidar Station, Meteorological Center of Camaguey)	551
4P-3	An All Solid State Laser for the Measurement of the Temperature of Mesospheric Sodium Layer Dale Simonich, Barclay Clemesha (Instituto Nacional de Pesquisas Espaciais)	555
4P-4	The Arecibo Potassium Lidar Daylight Receiver Jonathan S. Friedman (NAIC Arecibo Observatory)	557
4P-5	Lidar Observations of Stratospheric and Mesospheric Temperature Structure over the Equator Kai Nojima, Makoto Abo, Yasukuni Shibata, Chikao Nagasawa (Tokyo Metropolitan University)	561

4P-6	Lidar Measurements of the Ratio Between Aerosol Extinction and Backscatter Coefficients	563
	Barclay Clemesha, Dale Simonich (Instituto Nacional de Pesquisas Espaciais)	
4P-7	Rayleigh Lidar Observations of Double Stratopause Structure V. Sivakumar, Hassan Bencherif, P.B. Rao, A. Hauchecorne, D.N. Rao, S. Sharma, H. Chandra, A. Jayaraman (Université de La Réunion)	565
4P-8	Mesospheric Sodium Layer and Its Relation with Gravity Wave Perturbations Observed by Lidar Measurements A. A. Pimenta, B. R. Clemesha, D. M. Simonich, P. P. Batista (Instituto Nacional de Pesquisas Espaciais)	569
4P-9	Continuous Cloud Lidar Monitoring at South Pole Station: Analysis of PSC Formation and Denitrification Potential During 2003 James R. Campbell, Kenneth Sassen, Ellesworth J. Welton, James D. Spinhirne (Department of Atmospheric Sciences, University of Alaska, Fairbanks)	573
4P-10	Tropical/Sub-Tropical Mesopause Thermal Structure from Arecibo, PR (18.35°N, 66.75°W) and Maui, HI (20.7°N, 156.3°W) Jonathan S. Friedman, Xinzhao Chu (NAIC Arecibo Observatory)	577
4P-11	Temperature Lidar Network and SSU/NOAA Sysnergy for the Middle Atmosphere Monitoring Philippe Keckhut, William J. Randel, Chantal Claud, Thierry Leblanc, Wolfgang Steinbrecht, Hassan Bencherif, Stuart McDermid, Alain Hauchecorne (ServiSce d'Aéronomie, Institut Pierre et Simon Laplace)	581
4P-12	Detection of Ultra-Thin Tropical Cirrus during Troccinox -A Case Study Performed by Two Airborne Lidars Giovanni Martucci, Renaud Matthey, Valentin Mitev, Andreas Fix, Christoph Kiemle (Observatory of Neuchâtel, rue de l'Observatoire)	585
4P-13	Quasi-Biennial Oscillations of Variations of Total Content and Vertical Distribution of Stratospheric Ozone and Aerosol According to Observations at Siberian Lidar Station (56.5°N, 85.0°E) Vladimir V. Zuev, Vladimir D. Burlakov, Sergei I. Dolgii, Andrei V. El'nikov, Aleksei V. Nevzorov (Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Sciences)	589
4P-14	Wavelet Analysis of Temperature Profiles Obtained by Lidar over a Tropical Site: Reunion Island (20.8S,55.5E) S.B. Malinga, Hassan Bencherif (School of Physics, University of KwaZulu-Natal)	593

4P-15	First Result of Sodium and Iron Layers over the Equator Observed with Resonance Scattering Lidars Yasukuni Shibata, Chikao Nagasawa, Makoto Abo, Takashi Maruyama, Susumu Saito, Takuji Nakamura (Tokyo Metropolitan University)	597
4P-16	Observations of Subvisual Cirrus Clouds with a Lidar in Tarawa, Kiribati Suginori Iwasaki, Ichiro Matsui, Atsushi Shimizu, Nobuo Sugimoto, Masato Shiotani (National Defense Academy)	601
4P-17	The First Resonance Lidar Observations of Mesospheric Sodium over Gadanki (13.5°N, 79.2°E), India Y. Bhavani Kumar, D.Narayana Rao, P.Vishnu Prasanth (National Atmospheric Research Laboratory)	605
4P-18	The CSU Sodium Lidar Facility: Current Observation Capability and Science Tao Yuan, Tao Li, Phil Acott, Jia Yue, Sean Harrell, David A. Krueger, Chiao-Yao She (Physics Department, Colorado State University)	607
4P-19	Observations of Noctilucent Clouds in the Western Arctic Kazuyo Sakanoi, Richard L. Collins, Yasuhiro Murayama, Kohei Mizutani (Komazawa University)	611
4P-20	Long Term Measurements of Stratospheric Ozone by NIES Ozone DIAL at Tsukuba NDSC Complementary Station Chan Bong Park, Hideaki Nakane, Nobuo Sugimoto, Ichiro Matsui, Yasuhiro Sasano, Yasumi Fujinuma (National Institute for Environmental Studies)	615
4P-21	The Seasonal Variation of the Mesospheric Sodium Layer at Omuta, Japan Michihiro Uchiumi, Yasukuni Shibata, Makoto Abo, Chikao Nagasawa, Kiyoshi Igarashi (Ariake National College of Technology)	619
4P-22	Sodium Lidar Observations with the Upgraded MU Radar, and an All Sky Imager (OMTI) over Kyoto Area Takuya D. Kawahara, Takuji Nakamura, K. Shiokawa, Y. Saito, A. Nomura (Faculty of Engineering, Shinshu University)	623

Part II

Session 50		Local, regional and global air quality (tropospheric chemistry, transport, etc.)	
		Oral Presentations	
50-1	Obse Itsus	ibility Study of Adjoint Inverse Modeling of Asian Dust Using Lidar Network ervations (Invited) hi Uno, Keiya Yumimoto, Nobuo Sugimoto, Atsushi Shimizu, Shinsuke Satake earch Institute for Applied Mechanics, Kyushu University)	627
50-2	W. N	cal Properties of Asian Dust Measured by Raman Lidar at Taipei, Taiwan J. Chen, F. J. Tsai, Charles C. K. Chou, S. Y. Chang, T. K. Chen, J. P. Chen earch Center for Environmental Changes, Academia Sinica)	631
50-3	and I	cal and Microphysical Properties of Aerosols in Southern (Pearl River Delta) Northern China (Beijing) Observed with Raman Lidar and Sun Photometer hias Tesche, Detlef M"uller, Ronny Engelmann, Dietrich Althausen, Ulla dinger, Albert Ansmann (Leibniz Institute for Tropospheric Research)	635
50-4	Spri r Tada	cal Distribution and Optical Properties of Aerosols Observed over Japan in ng 2005 thiro Hayasaka, Kazuma Aoki, Atsushi Shimizu, Nobuo Sugimoto, Ichiro ui, Shinsuke Satake, Yoshitaka Muraji (Research Institute for Humanity and re)	639
5O-5	A.Y.S Atmo	ties of Urban Aerosols in Macao Using a Horizontal Mie Lidar S. Cheng, A. Viseu, R.L.M. Chan, K.S. Tam, K.I. Lam (Laboratory for ospheric Research, Dept. of Physics and Materials Science, City University of g Kong,)	643
5O-6		dary Layer Height by Lidar Aerosols Measurements at Chung-Li (25N,121E) Chiang, J. B. Nee (Department of Physics, National Central University)	647
50-7		sol Type Identification Using a UV- NIR-IR Lidar System gert, D. Peri (Israel Institute for Biological Research)	651
50-8	Mixi R. M Sand	ication of Airborne and Ship-Based Lidars for Charactering Transport and ing of Ozone over the Cold Ocean ichael Hardesty, Christoph J. Senff, Alan W. Brewer, Raul J. Alvarez, Scott P. Iberg, Sara C. Tucker, Janet M. Intrieri, Robert M. Banta, Lisa S. Darby AA/ESRL Chemical Sciences Division)	655

50-9	Amer Edwa Notar	rne Lidar Measurements of Ozone and Aerosol Distributions over North ica and the Western Atlantic Ocean during the INTEX-NA Field Experiment rd V. Browell, Johnathan W. Hair, Carolyn F. Butler, Marta A. Fenn, Anthony i, Susan A. Kooi, Syed Ismail, Richard A. Ferrare, Melody A. Avery, R. ey Pierce (NASA Langley Research Center)	659
Session	6O	Lidar-networking strategy, networking technologies	
		Oral Presentations	
6O-1	(NDA	and the Network for the Detection of Atmospheric Composition Change CC, formerly NDSC) (Invited)	665
		art McDermid, the NDACC Lidar Working Group (Table Mountain Facility, opulsion Laboratory, California Institute of Technology)	
60-2	System Gelso Apitu Come Papay Ravet	pean Aerosol Research Lidar Network -Advanced Sustainable Observation (EARLINET-ASOS) mina Pappalardo, Jens Bösenberg, Aldo Amodeo, Albert Ansmann, Arnoud ley, Dimitris Balis, Christine Böckmann, Anatoly Chaikovsky, Adolfo erón, Volker Freudenthaler, Georg Hansen, Valentin Mitev, Alexandros vannis, Maria Rita Perrone, Aleksander Pietruczuk, Manuel Pujadas, Francois ta, Vincenzo Rizi, Valentin Simeonov, Nicola Spinelli, Dimitar Stoyanov, as Trickl, Matthias Wiegner (Istituto di Metodologie per l'Analisi Ambientale)	667
6O-3	Anato	INET - Lidar Network for Monitoring Aerosol and Ozone in CIS Regions bly Chaikovsky, A. Ivanov, Yu. Balin, A. Elnikov, G. Tulinov, I. Plusnin, O., B. Chen (Institute of Physics, National Academy of Sciences of Belarus)	671
60-4	Juan Eduai	ing a Lidar Network in Latin America: Progress and Difficulties Carlos Antuña, Marcos Andrade, Eduardo Landulfo, Barclay Clemesha, rdo Quel, Alvaro Bastidas (Estacion Lidar Camaguey, Instituto de prologia)	673
Session	70	Meteorological processes, weather forecast (wind, water vapor, temperature, et	c.)
70-1		nuous Ground-Based Water Vapour Profiling Using DIAL Bösenberg, Holger Linńe (Max-Planck-Institut für Meteorologie)	679

70-2	RAMSES - German Meteorological Service Raman Lidar for Atmospheric Moisture Sensing	683
	Dirk Engelbart, Jens Reichardt, Ina Mattis, Ulla Wandinger, Volker Klein, Alexander Meister, Bernhard Hilber, Volker Jaenisch (Richard Aßmann Observatorium, Deutscher Wetterdienst)	
70-3	Wide-Range Vertical Sounding of Free-Tropospheric Water Vapor: The First Two Years of Operation of the Zugspitze Differential-Absorption Lidar Thomas Trickl, Hannes Vogelmann (Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung)	687
70-4	A Comparison between Airborne Lidar Depolarization and In-Situ Ice Crystal Measurements from Cirrus Clouds Clive R. Cook, James Whiteway, Paul Connolly (Department of Earth and Space Science & Engineering, York University, Toronto)	691
70-5	The Benefits of Lidar for Meteorological Research: The Convective and Orographically-Induced Precipitation Study (COPS) Andreas Behrendt, Volker Wulfmeyer, Christoph Kottmeier, Ulrich Corsmeier (Institute of Physics and Meteorology, University of Hohenheim)	695
70-6	Scanning Rotational Raman Lidar at 355 nm for the Measurement of Tropospheric Temperature Fields Marcus Radlach, Andreas Behrendt, Sandip Pal, Thorsten Schaberl, Volker Wulfmeyer (Institute of Physics and Meteorology, University of Hohenheim)	699
70-7	Synergetic Application of a Ground-Based Raman Lidar and an Airborne Spectrometer to Study the Evolution of a Cirrus Cloud Paolo Di Girolamo, Tiziano Maestri, Rolando Rizzi, Donato Summa, Filomena Romano (DIFA, Università degli Studi della Basilicata)	703
70-8	Upper Tropospheric Water Vapor and Particles Measured in the Tropics by Airborne H2O-DIAL during TROCCINOX and SCOUT-O3 Gerhard Ehret, Axel Amediek, Michael Esselborn, Andreas Fix, Christoph Kiemle, Martin Wirth, Harald Flentje (Institut für Physik der Atmosphäre, DLR,)	707
70-9	Horizontal Rolls and Plumes Detected by a 3D-Scanning Doppler Lidar Yasushi Fujiyoshi, Kazuya Yamashita, Chusei Fujiwara (Inst. Low Temp. Sci., Hokkaido Univ.)	711
70-10	Local Easterly Wind "Kiyokawa-Dashi" Observed by Coherent Doppler Lidar in Japan during the Summer 2004 Shoken Ishii, Kaori Sasaki, Kohei Mizutani, Tetsuo Aoki, Hiromitsu Kanno, Dai Matsushima, Weiming Sha, Akira Noda, Masahiro Sawada, Masashi Ujiie, Yousuke Matsuura, Toshiki Iwasaki (National Institute of Information and Communications Technology)	713

Session	180 Hydrosphere, cryosphere, vegetation and crustal dynamics applications and ot	hers
	Oral Presentations	
80-1	High Accuracy Optical 3-D Shape Measurement Using a Frequency-Shifted Feedback Laser Cheikh Ndiaye, Takefumi Hara, Norihito Hamada, Hiromasa Ito (Tohoku University, RIEC)	719
80-2	Laser-Induced Fluorescence for Assessment of Cultural Heritage Rasmus Grönlund, Jenny Hällström, Ann Johansson, Lorenzo Palombi, David Lognoli, Valentina Raimondi, Giovanna Cecchi, Kerstin Barup, Cinzia Conti, Olof Brandt, Barbro Santillo Frizell, Sune Svanberg (Division of Atomic Physics, Lund Institute of Technology)	723
80-3	An Imaging Lidar for Monitoring of Oil Spill and UV Fluorescent Substances at Water Surface and Subsurface Masahiko Sasano, Kazuo Hitomi, Hiroshi Yamanouchi, Susumu Yamagishi (National Maritime Research Institute, Japan)	727
Session	n 5P Local, regional and global air quality (tropospheric chemistry, transport, etc.)	
	Poster Presentations	
5P-1	Diurnal Cycle of Mixing Height Measured by Lidar W. N. Chen, P. H. Lin, T. K. Chen, Charles C. K. Chen, J. P. Chen (Research Center for Environmental Changes, Academia Sinica)	733
5P-2	Diurnal Variation of Mixing Height in Hong Kong R.L.M. Chan, O.S.M. Lee, A.Y.S. Cheng (Laboratory for Atmospheric Research, Dept. of Physics and Materials Science, City University of Hong Kong,)	737
5P-3	Three-Year Systematic Aerosol Lidar Ratio Measurements over Athens, Greece (2003-2006) A. Papayannis, G. Tsaknakis, R.E. Mamouri, G. Chourdakis, G. Georgoussis (National Technical University of Athens)	741
5P-4	Comparison between AERONET and Lidar Measurements during an Aerosol Event in Buenos Aires, Argentina L. Otero, P. Ristori, B. Holben, Eduardo Quel (CEILAP (CITEFA - CONICET))	743

5P-5	Lidar and AERONET Measurements in Rio Gallegos, Patagonia Argentina L. Otero, P. Ristori, J. Salvador, R. D'Elia, J. Pallota, E. Wolfram, B. Holben, Eduardo Quel (CEILAP (CITEFA - CONICET))	747
5P-6	Aerosol Size Distribution Derived from 355-nm and 532-nm Mie Lidar Signals Edgar Vallar, Mannelyn DelaCruz, Gerry Bagtasa, Ernest Macalalad, Eric Bangsal, Ma.Cecilia Galvez (De La Salle University)	751
5P-7	Seasonal Variation of Lidar Ratio Profile Observed by a Multi-Wavelength Raman Lidar System at Gwangju, Korea Youngmin Noh, Youngmin Kim, Y. J. Kim (Advanced Environmental Monitoring Research Center)	753
5P-8	Two Case-Studies of Boundary Layer Development Effect on the Ground Level Ozone Concentration over an Urban Area Ivan Kolev, Vera Grigorieva, Nikolay Kolev, Plamen Savov, Boyan Tatarov, Boiko Kaprielov (Institute of Electronics, Bulgarian Academy of Sciences)	757
5P-9	Lidar, Sunphotometer and Spectroradiometer Measurements of the Atmospheric Aerosol Optical Characteristics Nikolay Kolev, Panuganti Devara, Ilko Iliev, Tsvetina Evgenieva, Boiko Kaprielov, Ivan Kolev (Institute of Electronics, Bulgarian Academy of Sciences)	761
5P-10	Relationship between Water-Soluble Ions and Lidar Depolarization Ratio for Aerosol within the Boundary Layer at Taipei, Taiwan at the Spring of 2004 and 2005 S. Y. Chang, W. N. Chen, Charles C. K. Chou, J. P. Chen, T. K. Chen (Research Center for Environmental Changes, Academia Sinica)	765
5P-11	Correlation between Mixing Height and Concentrations of Air Pollutants in the Taipei Basin Charles C. K. Chou, C. T. Lee, W. N. Chen, S. Y. Chang, T. K. Chen, C. Y. Lin, J. P. Chen (Research Center for Environmental Changes, Academia Sinica)	769
5P-12	Total Scatter-to-Backscatter Ratio of Aerosol Derived from Aerosol Size Distribution Measurement W. N. Chen, S. Y. Chang, Charles C.K. Chou, T. K. Chen (Research Center for Environmental Changes, Academia Sinica)	773
5P-13	Evaluation of the OMI Aerosol Index Using Coincident Lidar Observations Vassilis Amiridis, Elina Giannakaki, Mariliza Koukouli, Stylianos Kazadzis, Dimitris Balis, Alkis Bais (Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki)	777

5P-14	Differential Absorption Lidar Measurements of Mercury Fluxes Rasmus Grönlund, Mikael Sjöholm, Petter Weibring, Hans Edner, Sune Svanberg (Atomic Physics Division, Lund Institute of Technology)	781
5P-15	Aerosol Properties Derived from Lidar/Sunphotometry, a Four-Year Systematic Study over the City of Sao Paulo, Brazil P. Sawamura, E. Landulfo, S. T. Uehara, C. A. Matos (Instituto de Pesquisas Energéticas e Nucleares)	783
5P-16	Improvement of MODIS Estimates of PM2.5 Concentrations Using Lidar Derived PBL S. Chaw, Y. Wu, B. Gross, F. Moshary, Samir Ahmed (City College of New York)	787
5P-17	SF6 Leak Detection Using TEA- CO2 DIAL for High Voltage Installations Parviz Parvin, Hasan Kariminezhad, Fazel Borna, Gholam-Reza Davoud-Abadi, Batool Sajad (Physics Department, Amirkabir University)	791
5P-18	Long-Range Transport of Free-Tropospheric Aerosol: A Nine-Year Climatology Horst Jäger, Paul James, Andreas Stohl, Thomas Trickl (Forschungszentrum Karlsruhe, Institut für Meteorologie und Klimaforschung)	795
5P-19	Eyesafe Scanning Aerosol Lidar at 355 nm Sandip Pal, Andreas Behrendt, Marcus Radlach, Thorsten Schaberl, Volker Wulfmeyer (Institute of Physics and Meteorology, University of Hohenheim)	797
5P-20	Seasonal and Inter-Annual Variations of Vertical Aerosol Distribution Observed in Thailand Atsushi Shimizu, Nobuo Sugimoto, Ichiro Matsui (National Institute for Environmental Studies)	801
5P-21	Rascal and Cruiser Mobile Tandem: A Synergistic Approach to Air Quality Kevin B. Strawbridge, Jeffrey R. Brook (Centre For Atmospheric Research Experiments)	805
5P-22	Aerosol Types and Characteristics Measured with Airborne Lidar during INTEX-NA Carolyn F. Butler, Edward V. Browell, Richard A. Ferrare, Johnathan W. Hair, Syed Ismail, Vincent G. Brackett, Marta A. Fenn, Anthony Notari, Susan A. Kooi, Sharon P. Burton (SAIC/NASA Langley Research Center)	809
5P-23	Study of Tropospheric Aerosol Properties over Chiba, Japan Using Multi-Wavelength Lidar, Sun Photometer, and Meteorological Data Taisuke Oshima, Shunsuke Fukagawa, Hiroaki Kuze, Nobuo Takeuchi, Gerry Bagtasa, Suekazu Naito, Masanori Yabuki (Center for Environmental Remote Sensing(CEReS), Chiba University)	813

5P-24	Downward Mixing in the Continental Arctic Boundary Layer during a Smoke Episode J. Fochesatto, R. Collins, C. Cahill, J. Conner, J. Yue (Geophysical Institute University of Alaska Fairbanks)	817
5P-25	Monitoring of Aeolian Dust Using JMA Operational Lidar under the Framework of WMO/GAW Aerosol Observation Network Toshinori Aoyagi, Kenji Suzuki, Hiroshi Tatsumi, Kohei Honda, Tomohiro Nagai, Osamu Uchino (Meteorological Research Institute, Japan Meteorological Agency)	821
5P-26	Polarization Lidar for Aerosol Observations in the Troposphere and Low Stratosphere over Suwon (127° E, 37° N), Korea Boyan Tatarov, Chan Bong Park, Choo Hie Lee, Nobuo Sugimoto (National Institute for Environmental Studies)	823
5P-27	Lidar Observation of the Dust Storm and Its Removal Process over the Taklimakan Desert, China Kenji Kai, Yuichi Nagata, Heon Sook Kim, Nobumitsu Tsunematsu, Zhou Homgfei, Tomohiro Nagai, Makoto Abo (Graduate School of Environmental Studies, Nagoya University)	825
5P-28	3D-AQS Raymond M. Hoff, Steven Ackerman, Jassim A. Al-Saadi, Vickie Boothe, D. Allen Chu, Fred Dimmick, Jill A. Engel-Cox, Shobha Kondragunta, Kevin J. McCann, Ana I. Prados, James Szykman, Omar Torres, Anthony J. Wimmers (University of Maryland, Baltimore County)	829
5P-29	A Case Study: The Diurnal Variation of the Dust Layer Height in the Taklimakan Desert after the Dust Storms in April 2002 Heon Sook Kim, Kenjii Kai, Yuichi Nagata (Graduate school of Environmental Studies, Nagoya University)	833
5P-30	Lidar Depolarization Measurement at Two Wavelengths (532 nm and 1064 nm) in Asian Dust Event Choo Hie Lee, Nobuo Sugimoto, Chan Bong Park (Lidar Center of Kyung Hee University, Korea)	837
5P-31	Automated Aerosol Lidar and Wind Lidar Detection Iwona S. Stachlewska, Laurent Sauvage, Patrick Chazette, Joseph Sanak, Jean Pierre Cariou, Matthieu Valla (Leosphere, EcolePolytechnique)	841
5P-32	Preliminary Results of Comparison between KC Ozonesonde and UV Ozone DIAL Masahisa Nakazato, Tomohiro Nagai, Tetsu Sakai, Takahisa Kobayashi (Meteorological Research Institute)	845

	(Meteorological Research Institute)	
Session	6P Lidar-networking strategy, networking technologies Poster Presentations	
6P-1	Network Observations of Asian Dust and Air Pollution Aerosols Using Two-Wavelength Polarization Nobuo Sugimoto, Atsushi Shimizu, Ichiro Matsui, Xuhui Dong, Jun Zhou, Xuechun Bai, Jixia Zhou, Choo-Hie Lee, Soon-Chang Yoon, Hajime Okamoto, Itsushi Uno (National Institute for Environmental Studies)	851
6P-2	European Aerosol Research Lidar Network -Advanced Sustainable Observation System (EARLINET-ASOS) Plans for Quality Assurance Volker Freudenthaler, Christine Böckmann, Jens Bösenberg, Gelsomina Pappalardo (Ludwig-Maximilians-Universität)	855
6P-3	Algorithms and Software for Lidar Data Progressing in CIS-LINET Anatoly Chaikovsky, A. Bril, S. Denisov, N. Balashevich (Institute of Physics, National Academy of Sciences of Belarus)	859
Session	Meteorological processes, weather forecast (wind, water vapor, temperature, etc.) Poster Presentations	
7P-1	Low Tropospheric Wind Measurement with 1.06 μ m Doppler Lidar Zhiqing Zhong, Dongsong Sun, Bangxin Wang, Haiyun Xia, Jingjing Dong, Xiaolin Zhou, Jun Zhou (Anhui Institute of Optics and Fine Mechanics)	863
7P-2	Small Scale Cloud Dynamics as Studied by Synergism of Time Lapsed Digital Camera and Elastic Lidar Farhad Abdi, Hamid R. Khalesifard, Pierre H. Flamant (Institute for Advanced Studies in Basic Sciences)	867
7P-3	Boundary Layer Water Vapor Variations Observed by Raman Lidar at the ARM SGP Site Kyoko Taniguchi, Zhien Wang (Department of Atmospheric Science, University of Wyoming)	871

Case Study of Urban Air Pollution over Tsukuba as Observed by UV Ozone DIAL

Masahisa Nakazato, Tomohiro Nagai, Tetsu Sakai, Takahisa Kobayashi

847

5P-33

7P-4	Low Altitude Ice-Cloud Measurement by In-Line Type Micro Pulse Lidar Tatsuo Shiina, Yu Tanaka, Toshio Honda (Faculty of Engineering, Chiba University)	875
7P-5	Water Vapor Lidar System and Measurements at the JPL Table Mountain Facility I. Stuart McDermid, Thierry Leblanc, Robin A. Aspey (Table Mountain Facility, Jet Propulsion Laboratory)	877
7P-6	$1.06\mum$ Aerosol Doppler Lidar for Wind Measurement Dongsong Sun, Jun Zhou, Huanling Hu, Jianwen Liu, Qingmei Wang (Anhui Institute of Optics & Fine Mechanics)	879
7P-7	Lidar Studies of Gravity Mountain Waves over Vitosha Mountain Georgi V. Kolarov, Ivan V. Grigorov (Institute of Electronics - Bulgarian Academy of Sciences)	881
7P-8	Raman Lidar Measurement of Water Vapor Profile in Alaska Yoshiko Ohtani, Kohei Mizutani, Richard L. Collins (Tokyo Metropolitan University)	883
7P-9	Validation of a Ground-Based Water Vapor Raman Lidar System in Athens, Greece R.E. Mamouri, A. Papayannis, I. Binietoglou, G. Chourdakis, G. Georgoussis (National Technical University of Athens)	885
7P-10	Rotational Raman Lidar Measurements for the Characterization of a Dry Stratospheric Intrusion Event Paolo Di Girolamo, Donato Summa, Domenico Sabatino, Rossella Ferretti, Claudia Faccani (DIFA, Università degli Studi della Basilicata)	887
7P-11	UV Raman Lidar Measurements of Relative Humidity for the Characterization of Aerosol and Cloud Microphysical Properties Paolo Di Girolamo, Donato Summa, Domenico Sabatino (DIFA, Università degli Studi della Basilicata)	891
7P-12	Simultaneous High-Resolution Observation of Scattering Layers with a Raman/Mie Lidar and the MU Radar/Frequency Interferometric Imaging Technique Tomoaki Takai, Takuji Nakamura, Hubert Luce, Gernot Hassenpflug, Mamoru Yamamoto, Toshitaka Tsuda (Research Institute for Sustainable Humanosphere, Kyoto University)	893
7P-13	Observation of Water Vapor with a Portable Raman Lidar Continuous Monitoring and Field Experiment over the Forest and at the Volcano Takuji Nakamura, Naohiro Sugimoto, Toshitaka Tsuda , Makoto Abo, Takeshi Hashimoto, Akihiko Terada (Research Institute for Sustainable Humanosphere, Kyoto University)	897

	Sensing Institute, Ocean University of China)	
Session	n 8P Hydrosphere, cryosphere, vegetation and crustal dynamics applications and ot Poster Presentations	hers
8P-1	High Resolution Rangefinder with Pulsed Laser by Undersampling Method Masahiro Ohishi, Fumio Ohtomo, Masaaki Yabe, Mituru Kanokogi, Takaaki Saito, Yasuaki Suzuki, Chikao Nagasawa (General Engineering & Quality Assurance Division, R&D laboratory, Topcon Corporation)	907
8P-2	Measuring Plankton Distributions with an Airborne Lidar James H. Churnside (NOAA Earth System Research Laboratory)	911
8P-3	Retrieval of Hydrosol Characteristics with MFOV Raman Lidar Aleksey V. Malinka, Eleonora P. Zege (B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus)	915
8P-4	Blue-Green Algae Monitoring by a Fluorescence Lidar -Observation at Lake Suwa- Kengo Takano, Yasunori Saito, Miki Tagawa, Fumitoshi Kobayashi, Takuya D. Kawahara, Ho-Dong Park (Faculty of Engineering, Shinshu University)	919
8P-5	Laser-Induced Fluorescence (LIF) Lidar for Plant Monitoring Yasunori Saito, M. Hara, Fumitoshi Kobayashi, Takuya D. Kawahara (Faculty of Engineering, Shinshu University)	921
8P-6	Advances in Shallow Water Measurements with Optech Shoals Bathymeter Eric Yang, Paul E. LaRocque, Gary Guenther, Wayne Szameitat, David Reid, Chris Singh, Wenbo Pan, Karen Francis, John F. Hahn, Allan I. Carswell (Optech Incorporated)	923
Session	n 9P Space-borne lidars, space applications, space program	
	Poster Presentations	
9P-1	Lightweight Multiplexed Telescope System for Spaceborne Lidars Geary Schwemmer, Bruce Gentry, Brent Bos, Caner Cooperrider, Richard Rallison (Science and Engineering Services, Inc.)	929

7P-14 A Case Study of Cold Air Parcel Event Passing Tokyo Observed with Rayleigh-Mie

Xiaoquan Song, Dengxin Hua, Zhishen Liu, Takao Kobayashi (Ocean Remote

Raman Lidar

901

9P-2	Validation of CALIPSO Lidar (CALIOP) Calibration Zhaoyan Liu, Yongxiang Hu, Mark Vaughan, John Reagan, Chris Hostetler, David Winker, William Hunt, Kathleen Powell, Charles Trepte, Matthew McGill (National Institute of Aerospace)	933
9P-3	Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio Ali H. Omar, David M. Winker, Mark A. Vaughan (NASA Langley Research Center)	937
9P-4	On Orbit Receiver Performance of the Geosciences Laser Altimeter System (GLAS) on ICESat Xiaoli Sun, James B. Abshire, James D. Spinhirne, Jan F. McGarry, Peggy L. Jester, Donghui Yi, Stephen P. Palm, Redgie S. Lancaster (NASA Goddard Space Flight Center)	941
9P-5	Validation of ECMWF Global Forecast Model Parameters Using the Geoscience Laser Altimeter System (GLAS) Atmospheric Channel Measurements Stephen P. Palm , Angela Benedetti, James Spinhirne (Science Systems and Applications, Inc.)	945
9P-6	Evaluation of Cloud-Top Detection by Satellite-Borne Pseudo-Random Noise Continuous Wave Backscatter Lidar Valentin Mitev, Renaud Matthey, João Pereira do Carmo (Observatory of Neuchâtel, rue de l'Observatoire)	949
9P-7	Off-Axis Beam Angle Dependence of Intensity Fluctuation Masahiro Toyoda (National Institute of Information and Communications Technology)	953
9P-8	Goddard Technology Efforts to Improve Space Borne Laser Reliability William S. Heaps (NASA Goddard Space Flight Center)	957
9P-9	Contamination-Induced Degradation of Space-Borne Lidars Yngve Lien, Elmar Reinhold, Martin Endemann, Denny Wernham, Errico Armandillo (European Space Agency)	961
9P-10	African Dust over Ocean and Continent by Coupling Active and Passive Spaceborne Sensors Sebastien Berthier, Patrick Chazette, Jacques Pelon, F. Dulac, F. Thieuleux, C. Moulin (Service d'Aeronomie du CNRS)	965
9P-11	Validation of Satellite Remote Sensed Cloud Properties Using Combined Lidar and Radar Measurements Robert E. Holz, Tiziano Maestri, Edwin W. Eloranta, Daniel H. DeSlover, Matthew McGill (University of Wisconsin)	969

9P-12	Feasibility Study of Microwave Modulation DIAL System for Global CO2 Monitoring Shumpei Kameyama, Shinichi Ueno, Yoshihito Hirano, Nobuo Sugimoto, Toshiyoshi Kimura (Mitsubishi Electric Corporation)	973
9P-13	Compact, Engineered, 2-Micron Coherent Doppler Wind Lidar Transceiver Michael J. Kavaya, Upendra N. Singh, Grady J. Koch, Jirong Yu, Farzin Amzajerdian, Bo C. Trieu, Mulugeta Petors (NASA Langley Research Center)	977
9P-14	Lidar on the PHOENIX Mars Mission James A. Whiteway, Thomas J. Duck, Allan I. Carswell, Clive R. Cook, Cameron Dickenson, Leonce Komguem, Michael Daly, John F. Hahn, Peter A. Taylor (Department of Earth and Space Science & Engineering, York University)	981
9P-15	Identification of Stationary States Using Logarithmic Averages John F. Hahn, Sergey Pashin, Marius Irmia, Kevin Shortt, Vladimir Podoba, Tatiana Razoumikhina, Allan I. Carswell (Optech Incorporated)	985
Session	n 90 Space-borne lidars, space applications, space program Oral Presentations	
90-1	Initial Results from CALIPSO (Invited) David M. Winker, Jacques Pelon, M. Patrick McCormick (NASA Langley Research Center)	991
90-2	Summary of Global Results from the GLAS Satellite Lidar (Invited) James D. Spinhirne, Stephen P. Palm, William D. Hart, Dennis L. Hlavka (NASA - Goddard Space Flight Center)	995
90-3	Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-Orbit Measurement Performance James B. Abshire, Xiaoli Sun, Haris Riris, J. Marcos Sirota, J. F. McGarry, Steve Palm, Donghui Yi, Peter Liiva (NASA - Goddard Space Flight Center)	999
90-4	Performance of the GLAS Laser Transmitter in Space Anthony W. Yu, Robert S. Afzal, Joseph L. Dallas, Anthony Melak, Alan Lukemire, Luis Ramos-Izquierdo, William Mamakos (NASA Goddard Space Flight Center)	1003
90-5	Treatment of Multiple-Scattering Effects in Extinction Retrievals in Complex Atmospheric Scenes Proved by CALIPSO Stuart A. Young, David M. Winker, Mark A. Vaughan, Kathleen A. Powell, Ralph E. Kuehn (CSIRO Atmospheric Research)	1007

90-6	Progress with ADM-Aeolus, the Spacefborne Doppler Wind Lidar ADM (Invited) Peter Dubock, Martin Endmann, Paul Ingmann (European Space Agency)	1011
90-7	Particle Backscatter and Extinction Profiling with the Spaceborne HSR Doppler Wind Lidar ALADIN Albert Ansmann, Paul Ingmann, Olivier Le Rille, Dulce La jas, Ulla Wandinger (Leibniz Institute for Tropospheric Research)	1015
90-8	The Use of Circular Polarization in Space-Based Lidar Systems: Considerations for the EarthCARE Lidar David Patrick Donovan (Royal Netherlands Meteorological Institute (KNMI))	1019
90-9	Solar Radiance and Albedo of Clouds from Space Lidar C. Martin. R. Platt, Steven D. Miller, William H. Hunt (Colorado State University)	1023
90-10	Combined 2 μ m DIAL and Doppler Lidar: Application to the Atmosphere of Earth or Mars Upendra N. Singh, Grady J. Koch, Syed Ismail, Michael J. Kavaya, Jirong Yu, Sidney A. Wood, G. David Emmitt (NASA Langley Research Center)	1027
90-11	The JPL Carbon Dioxide Laser Absorption Spectrometer Gary D. Spiers, Sven Geier, Mark W. Phillips, Robert T. Menzies (Jet Propulsion Laboratory)	1031
90-12	Global Environment Monitoring System in JAXA (Invited) Toshiyoshi Kimura (EORC, JAXA)	1033
90-13	Development of Conductively Cooled 2micron Laser Oscillators Kohei Mizutani, Toshikazu Itabe, Shoken Ishii, Tetsuo Aoki, Kazuhiro Asai, Atsushi Sato, Hirotake Fukuoka, Takayoshi Ishikawa, Toshiyoshi Kimura (National Institute of Information and Communications Technology)	1037
90-14	Development of Lidar for Deep Space Mission HAYABUSA Takahide Mizuno, Katsuhiko Tsuno, Eisuke Okumura, Michio Nakayama (Institute of Space and Astronautical Science JAXA)	1039
90-15	The ESA EarthCARE Mission: Mission Concept and Lidar Instrument Pre- Development (Invited) Arnaud Hélière, Jean-Loup Bézy, Alain Lefebvre, Wolfgang Leibrandt, Chun-Chi Lin, Tobias Wehr, Toshiyoshi Kimura, Hiroshi Kumagai (European Space Agency, Directorate of Earth Observation Programmes)	1041

Post Deadline Papers

Session PD1 Post deadline papers 1

Poster Presentations

PD1-1 Combined Analog-to-Digital and Photon Counting Detection Utilized for Continuous Raman Lidar Measurements

Diana Petty, Dave Turner (Pacific Northwest National Laboratory)

PD1-2 Improving CALIPSO Lidar Retrievals of Surface Level Backscatter as a Proxy for PM2.5 Using MODIS Path Reflectance Constraints

L. Charles, M. M. Oo, B. Hermann, B. Gross, F. Moshary, S. Ahmed (Optical Remote Sensing Laboratory, City College of New York)

PD1-3 The RIVM Mobile Lidar – Design and Operation of a Versatile System for Measuring Atmospheric Trace Gases

Stijn Berkhout, René van der Hoff, Dann Swart, Hans Bergwerff (National Institute for Public Health and the Environment (RIVM))

PD1-4 A Compact, Rapidly Tunable Ce:LiCAF DIAL Transmitter for Airborne Ozone Measurements

Coorg R. Prasad, Victor A. Fromzel, Wenhui Shi, Chris S. Wilks, Russell De Young (Science and Engineering Services, Inc.)

PD1-5 NASA Langley Airborne High Spectral Resolution Lidar Instrument Description David B. Harper, Anthony Cook, Chris Hostetler, John W. Hair, Terry L. Mack (NASA Langley Research Center)

PD1-6 **Depolarization Standoff Lidar for Discrimination of Biological Warfare Aerosols**Hyo S. Lee, I. H. Hwang, Sangwoo Lee, Guangkun Li, Robert M. Setrino, Coorg R. Prasad (Science and Engineering Services, Inc.)

Session PD2 Post deadline papers 2

Poster Presentations

PD2-1 Measurement of Thin Cloud Optical Properties Using a Combined Mie-Raman Lidar

Yonghua Wu, Shuki Chaw, Barry Gross, Yu Zhao, Fred Moshary, Sam Ahmed (NOAA-CREST, City College of New York)

PD2-2 Performance Estimates of the Phoenix Mars Scout Lidar System

Cameron S. Dickinson, Thomas J. Duck (Dalhousie University, Department of Physics and Atmospheric Science)

PD2-3 Characterization of Error Sources for Airborne and Space-Based CO2 DIAL Measurements

Susan A. Kooi, Edward V. Browell, Syed Ismail, Michael E. Dobbs, Berrien Moore III, T. Scott Zaccheo (SAIC/NASA Langley Research Center)

PD2-4 NLC, Potassium Densities and Temperatures by Lidar and Falling Sphere at Spitsbergen, 78° N

Josef Hoeffner (Institute of Atmospheric Physics (IAP))

PD2-5 Combination of Lidar and Radar Observations to Retrieve Microphysical Properties of Boundary Layer Clouds Using a New Analytical Approach

Damien Josset, Jacques Pelon, Alain Protat, Martial Haeffelin (Service d'aeronomie/IPSL)

PD2-6 Long Range Transport of Forest Fire Smoke Aerosols

T. J. Duck, B. Firanski, C. Dickinson, M. Coffin, A. Stohl (Dalhousie University, Department of Physics and Atmospheric Science)

PD2-7 Observation and Model Analysis of a Long-Range Transport Event of Asian Dust and Pollutants to Taiwan

Chuan-Yao Lin, Z. Wang, W. N. Chen, S. Y. Chang, Charles C.K. Chou (Research Center for Environmental Changes)

PD2-8 Optical Properties of Lidar-Observed PSC on the Early Stage of PSC Formation over Dome Station, Antarctic

Kouichi Shiraishi, Masahiko Hayashi, Motowo Fujiwara, Tahashi Shibata, Yasunobu Iwasaka, Shinji Makiyama, Kentaro Murayama (Faculty of Science, Fukuoka university)

PD2-9 Characterization of Biomass Burning Aerosols from Microlidar and Co-Located Observations at Djougou (Benin) during AMMA/SOP 0

J. Pelon, M. Mallet, A. Mariscal, S. Crewell, S. Victori, P. Goloub, J. Haywood (SA-LMD/IPSL, CNRS)

PD2-10 Cloud-Aerosols Spin-Off Products Relevant to Climate Monitoring to be Provided by the "ADM - ÆOLUS" ESA's Wind Mission: the L2A Data Processor and New Concept of Integrated Two-Way Transmission

Pierre H. Flamant (Laboratoire de Météorologie Dynamique Institut Pierre Simon Laplace (LMD/IPSL))